期刊论文详细信息
Molecular Cytogenetics
The genome diversity and karyotype evolution of mammals
Roscoe Stanyon1  Vladimir A Trifonov2  Alexander S Graphodatsky2 
[1] Department of Evolutionary Biology, University of Florence, 50122, Italy;Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
关键词: genome sequencing;    phylogenetic trees;    mammalian evolution;    Chromosome painting;   
Others  :  1151944
DOI  :  10.1186/1755-8166-4-22
 received in 2011-08-01, accepted in 2011-10-12,  发布年份 2011
【 摘 要 】

The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.

【 授权许可】

   
2011 Graphodatsky et al; licensee BioMed Central Ltd.

附件列表
Files Size Format View
49KB Image download
Figure 7. 84KB Image download
Figure 6. 40KB Image download
Figure 5. 92KB Image download
Figure 4. 48KB Image download
Figure 3. 53KB Image download
Figure 2. 52KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ: Molecular phylogenetics and the origins of placental mammals. Nature 2001, 409:614-618.
  • [2]Tjio HJ LA: The chromosome numbers of man. Hereditas 1956, 42:1-6.
  • [3]Wurster DH, Benirschke K: Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 1970, 168:1364-1366.
  • [4]Contreras LC, Torresmura JC, Spotorno AE: The Largest Known Chromosome-Number for a Mammal, in a South-American Desert Rodent. Experientia 1990, 46:506-508.
  • [5]Paris Conference (1971): Standardization in human cytogenetics Cytogenetics 1972, 11:317-362.
  • [6]S.J. O'Brien WGN, Menninger JC: Atlas of Mammalian Chromosomes. John Wiley and Sons Publishers; 2006.
  • [7]Hsu TC, Arrighi FE: Distribution of constitutive heterochromatin in mamallian chromosomes. Chromosoma 1971, 34:243-253.
  • [8]Hatch FT, Bodner AJ, Mazrimas JA, Moore DH: Satellite DNA and cytogenetic evolution. DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (genus Dipodomys). Chromosoma 1976, 58:155-168.
  • [9]Deaven LL, Vidal-Rioja L, Jett JH, Hsu TC: Chromosomes of Peromyscus (rodentia, cricetidae). VI. The genomic size. Cytogenet Cell Genet 1977, 19:241-249.
  • [10]Mascarello JT MJ: Chromosomes of antelope squirrels (genus Ammospermophilus): a systematic banding analysis of four species with unusual constitutive heterochromatin. Chromosoma 1977, 64:207-217.
  • [11]Patton JL, Sherwood SW: Genome evolution in pocket gophers (genus Thomomys). I. Heterochromatin variation and speciation potential. Chromosoma 1982, 85:149-162.
  • [12]Sherwood SW, Patton JL: Genome evolution in pocket gophers (genus Thomomys). II. Variation in cellular DNA content. Chromosoma 1982, 85:163-179.
  • [13]Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Kohler N: Discovery of tetraploidy in a mammal. Nature 1999, 401:341.
  • [14]Svartman M, Stone G, Stanyon R: Molecular cytogenetics discards polyploidy in mammals. Genomics 2005, 85:425-430.
  • [15]Gallardo MH, Gonzalez CA, Cebrian I: Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae). Genomics 2006, 88:214-221.
  • [16]Graphodatsky AS: Conserved and variable elements of mammalian chromosomes. In Cytogenetics of animals. Edited by CRE H. Oxon, UK: CAB International Press; 2006:95-124.
  • [17]Grafodatskii AS: [Comparative chromosomics]. Mol Biol (Mosk) 2007, 41:408-422.
  • [18]Claussen U: Chromosomics. Cytogenet Genome Res 2005, 111:101-106.
  • [19]Wienberg J, Jauch A, Stanyon R, Cremer T: Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 1990, 8:347-350.
  • [20]Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Fergusonsmith MA, Nordenskjold M, Pfragner R, Ponder BAJ: Cytogenetic Analysis by Chromosome Painting Using Dop-Pcr Amplified Flow-Sorted Chromosomes. Gene Chromosome Canc 1992, 4:257-263.
  • [21]Scherthan H, Cremer T, Arnason U, Weier HU, Limadefaria A, Fronicke L: Comparative Chromosome Painting Discloses Homologous Segments in Distantly Related Mammals. Nature Genetics 1994, 6:342-347.
  • [22]Ferguson-Smith MA: Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 1997, 5:253-265.
  • [23]Ferguson-Smith MA, Trifonov V: Mammalian karyotype evolution. Nat Rev Genet 2007, 8:950-962.
  • [24]Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Rocchi M, Claussen U, Liehr T: Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenetics and Cell Genetics 2001, 93:242-248.
  • [25]Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Claussen U, Liehr T: Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding. International Journal of Molecular Medicine 2003, 12:139-146.
  • [26]Yang F, Carter NP, Shi L, Ferguson-Smith MA: A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 1995, 103:642-652.
  • [27]Huang L, Chi J, Wang J, Nie W, Su W, Yang F: High-density comparative BAC mapping in the black muntjac (Muntiacus crinifrons): molecular cytogenetic dissection of the origin of MCR 1p+4 in the X1X2Y1Y2Y3 sex chromosome system. Genomics 2006, 87:608-615.
  • [28]Fredga K: Aberrant sex chromosome mechanisms in mammals. Evolutionary aspects. Differentiation 1983, 23 Suppl:S23-30.
  • [29]Romanenko SA, Sitnikova NA, Serdukova NA, Perelman PL, Rubtsova NV, Bakloushinskaya IY, Lyapunova EA, Just W, Ferguson-Smith MA, Yang F, Graphodatsky AS: Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Res 2007, 15:891-897.
  • [30]Vorontsov NN, Lyapunova EA, Borissov YM, Dovgal VE: Variability of Sex-Chromosomes in Mammals. Genetica 1980, 52-3:361-372.
  • [31]Rens W, Grutzner F, O'Brien PC, Fairclough H, Graves JA, Ferguson-Smith MA: Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA 2004, 101:16257-16261.
  • [32]Grutzner F, Rens W, Tsend-Ayush E, El-Mogharbel N, O'Brien PCM, Jones RC, Ferguson-Smith MA, Graves JAM: In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 2004, 432:913-917.
  • [33]Rens W, O'Brien PC, Grutzner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, Trifonov VA, Skelton H, Wallis MC, Johnston S, et al.: The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol 2007, 8:R243. BioMed Central Full Text
  • [34]Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Grutzner F, Deakin JE, Whittington CM, Schatzkamer K, et al.: Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 2008, 18:965-973.
  • [35]Pokorna M, Giovannotti M, Kratochvil L, Kasai F, Trifonov VA, O'Brien PC, Caputo V, Olmo E, Ferguson-Smith MA, Rens W: Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 2011.
  • [36]Alfoldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD, et al.: The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 2011.
  • [37]Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SK, Minx PJ, Fulton RS, McGrath SD, Locke DP, Friedman C, et al.: Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 2010, 463:536-539.
  • [38]Capanna E: Robertsonian numerical variation in animal speciation: Mus musculus, an emblematic model. Prog Clin Biol Res 1982, 96:155-177.
  • [39]Bauchau V: Phylogenetic Analysis of the Distribution of Chromosomal Races of Mus-Musculus Domesticus Rutty in Europe. Biol J Linn Soc 1990, 41:171-192.
  • [40]Král B RS: Banding patterns and Robertsonian fusion in the Western Siberian population of Sorex araneus (Insectivora, Soricidae). Zool Listy 1974, 23:217-227.
  • [41]Volobouev VT: Phylogenetic-Relationships of the Sorex-Araneus-Arcticus Species Complex (Insectivora, Soricidae) Based on High-Resolution Chromosome Analysis. Journal of Heredity 1989, 80:284-290.
  • [42]Fagundes V, Vianna-Morgante AM, Yonenaga-Yassuda Y: Telomeric sequences localization and G-banding patterns in the identification of a polymorphic chromosomal rearrangement in the rodent Akodon cursor (2n = 14,15 and 16). Chromosome Res 1997, 5:228-232.
  • [43]Volobouev V, Vogt N, Viegas-Pequignot E, Malfoy B, Dutrillaux B: Characterization and chromosomal location of two repeated DNAs in three Gerbillus species. Chromosoma 1995, 104:252-259.
  • [44]Volobujev VT: B-Chromosomes System of the Mammals. Caryologia 1981, 34:1-23.
  • [45]Cernyavsky FB, Kozlovsky AI: Species Status and History of the Arctic Lemmings (Dicrostonyx, Rodentia) of the Wrangel Island. Zool Zh 1980, 59:266-273.
  • [46]AS G: Karyotypical relationships between Cervidae. J Zool 1990, 69:101-114.
  • [47]Trifonov VA, Perelman PL, Kawada SI, Iwasa MA, Oda SI, Graphodatsky AS: Complex structure of B-chromosomes in two mammalian species: Apodemus peninsulae (Rodentia) and Nyctereutes procyonoides (Carnivora). Chromosome Res 2002, 10:109-116.
  • [48]Graphodatsky AS, Kukekova AV, Yudkin DV, Trifonov VA, Vorobieva NV, Beklemisheva VR, Perelman PL, Graphodatskaya DA, Trut LN, Yang FT, et al.: The proto-oncogene C-KIT maps to canid B-chromosomes. Chromosome Research 2005, 13:113-122.
  • [49]Yudkin DV, Trifonov VA, Kukekova AV, Vorobieva NV, Rubtsova NV, Yang F, Acland GM, Ferguson-Smith MA, Graphodatsky AS: Mapping of KIT adjacent sequences on canid autosomes and B chromosomes. Cytogenet Genome Res 2007, 116:100-103.
  • [50]Trifonov VA, Dement'eva PV, Beklemisheva VR, Iudkin DV, Vorob'eva NV, Grafodatskii AS: [Supernumerary chromosomes, segmental duplications, and evolution]. Genetika 2010, 46:1234-1236.
  • [51]Voullaire LE, Slater HR, Petrovic V, Choo KHA: A Functional Marker Centromere with No Detectable Alpha-Satellite, Satellite-Iii, or Cenp-B Protein - Activation of a Latent Centromere. Am J Hum Genet 1993, 52:1153-1163.
  • [52]Rocchi M, Stanyon R, Archidiacono N: Evolutionary new centromeres in primates. Prog Mol Subcell Biol 2009, 48:103-152.
  • [53]Carbone L, Ventura M, Tempesta S, Rocchi M, Archidiacono N: Evolutionary history of chromosome 10 in primates. Chromosoma 2002, 111:267-272.
  • [54]Montefalcone G, Tempesta S, Rocchi M, Archidiacono N: Centromere repositioning. Genome Research 1999, 9:1184-1188.
  • [55]Ventura M, Antonacci F, Cardone MF, Stanyon R, D'Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M: Evolutionary formation of new centromeres in macaque. Science 2007, 316:243-246.
  • [56]Carbone L, Nergadze SG, Magnani E, Misceo D, Francesca Cardone M, Roberto R, Bertoni L, Attolini C, Francesca Piras M, de Jong P, et al.: Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 2006, 87:777-782.
  • [57]Trifonov VA, Kosyakova N, Romanenko SA, Stanyon R, Graphodatsky AS, Liehr T: New insights into the karyotypic evolution in muroid rodents revealed by multicolor banding applying murine probes. Chromosome Res 2010, 18:265-275.
  • [58]Ferreri GC, Liscinsky DM, Mack JA, Eldridge MD, O'Neill RJ: Retention of latent centromeres in the Mammalian genome. J Hered 2005, 96:217-224.
  • [59]Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA: Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenetic and Genome Research 2003, 102:326-330.
  • [60]Fronicke L, Wienberg J, Stone G, Adams L, Stanyon R: Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting. Proc Biol Sci 2003, 270:1331-1340.
  • [61]Yang F, Alkalaeva EZ, Perelman PL, Pardini AT, Harrison WR, O'Brien PCM, Fu B, Graphodatsky AS, Ferguson-Smith MA, Robinson TJ: Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. P Natl Acad Sci USA 2003, 100:1062-1066.
  • [62]Robinson TJ, Fu B, Ferguson-Smith MA, Yang F: Cross-species chromosome painting in the golden mole and elephant-shrew: support for the mammalian clades Afrotheria and Afroinsectiphillia but not Afroinsectivora. Proc Biol Sci 2004, 271:1477-1484.
  • [63]Yang FT, Graphodatsky AS, Li TL, Fu BY, Dobigny G, Wang JH, Perelman PL, Serdukova NA, Su WT, O'Brien PCM, et al.: Comparative genome maps of the pangolin, hedgehog, sloth, anteater and human revealed by cross-species chromosome painting: further insight into the ancestral karyotype and genome evolution of eutherian mammals. Chromosome Research 2006, 14:283-296.
  • [64]Svartman M, Stone G, Stanyon R: The ancestral Eutherian karyotype is present in Xenarthra. Plos Genet 2006, 2:1006-1011.
  • [65]Froenicke L, Caldes MG, Graphodatsky A, Muller S, Lyons LA, Robinson TJ, Volleth M, Yang F, Wienberg J: Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 2006, 16:306-310.
  • [66]Bourque G, Zdobnov EM, Bork P, Pevzner PA, Tesler G: Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Genome Res 2005, 15:98-110.
  • [67]Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, et al.: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 2005, 309:613-617.
  • [68]Ma J, Zhang LX, Suh BB, Raney BJ, Burhans RC, Kent WJ, Blanchette M, Haussler D, Miller W: Reconstructing contiguous regions of an ancestral genome. Genome Research 2006, 16:1557-1565.
  • [69]Rocchi M, Archidiacono N, Stanyon R: Ancestral genomes reconstruction: An integrated, multi-disciplinary approach is needed. Genome Research 2006, 16:1441-1444.
  • [70]Robinson TJ, Ruiz-Herrera A, Castresana J: Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biology 2006., 7
  • [71]Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, et al.: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317:86-94.
  • [72]Muller S, Hollatz M, Wienberg J: Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Human Genetics 2003, 113:493-501.
  • [73]Roberto R, Capozzi O, Wilson RK, Mardis ER, Lomiento M, Tuzun E, Cheng Z, Mootnick AR, Archidiacono N, Rocchi M, Eichler EE: Molecular refinement of gibbon genome rearrangements. Genome Res 2007, 17:249-257.
  • [74]Misceo D, Capozzi O, Roberto R, Dell'oglio MP, Rocchi M, Stanyon R, Archidiacono N: Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping. Genome Res 2008, 18:1530-1537.
  • [75]Wichman HA, Payne CT, Ryder OA, Hamilton MJ, Maltbie M, Baker RJ: Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J Hered 1991, 82:369-377.
  • [76]Bush GL, Case SM, Wilson AC, Patton JL: Rapid speciation and chromosomal evolution in mammals. Proc Natl Acad Sci USA 1977, 74:3942-3946.
  • [77]Yang F, O'Brien PC, Milne BS, Graphodatsky AS, Solanky N, Trifonov V, Rens W, Sargan D, Ferguson-Smith MA: A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 1999, 62:189-202.
  • [78]Roberto R, Misceo D, D'Addabbo P, Archidiacono N, Rocchi M: Refinement of macaque synteny arrangement with respect to the official rheMac2 macaque sequence assembly. Chromosome Res 2008, 16:977-985.
  • [79]Stanyon R, Yang F, Cavagna P, O'Brien PCM, Bagga M, Ferguson-Smith MA, Wienberg J: Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenetics and Cell Genetics 1999, 84:150-155.
  • [80]Nadeau JH, Taylor BA: Lengths of Chromosomal Segments Conserved since Divergence of Man and Mouse. P Natl Acad Sci-Biol 1984, 81:814-818.
  • [81]Romanenko SA, Perelman PL, Serdukova NA, Trifonov VA, Biltueva LS, Wang JH, Li TL, Nie WH, O'Brien PCM, Volobouev VT, et al.: Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 2006, 17:1183-1192.
  • [82]Romanenko SA, Volobouev VT, Perelman PL, Lebedev VS, Serdukova NA, Trifonov VA, Biltueva LS, Nie W, Brien PCMO, Bulatova NS, et al.: Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Research 2007, 15:283-297.
  • [83]Sitnikova NA, Romanenko SA, O'Brien PC, Perelman PL, Fu B, Rubtsova NV, Serdukova NA, Golenishchev FN, Trifonov VA, Ferguson-Smith MA, et al.: Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res 2007, 15:447-456.
  • [84]Trifonov V, Karst C, Claussen U, Mrasek K, Michel S, Avner P, Liehr T: Microdissection-derived murine mcb probes from somatic cell hybrids. J Histochem Cytochem 2005, 53:791-792.
  • [85]Stanyon R, Stone G, Garcia M, Froenicke L: Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 2003, 82:245-249.
  • [86]Li TL, O'Brien PCM, Biltueva L, Fu BY, Wang JH, Nie WH, Ferguson-Smith MA, Graphodatsky AS, Yang FT: Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting. Chromosome Research 2004, 12:317-335.
  • [87]Graphodatsky AS, Yang F, Dobigny G, Romanenko SA, Biltueva LS, Perelman PL, Beklemisheva VR, Alkalaeva EZ, Serdukova NA, Ferguson-Smith MA, et al.: Tracking genome organization in rodents by Zoo-FISH. Chromosome Research 2008, 16:261-274.
  • [88]Trifonov VA, Stanyon R, Nesterenko AI, Fu B, Perelman PL, O'Brien PC, Stone G, Rubtsova NV, Houck ML, Robinson TJ, et al.: Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 2008, 16:89-107.
  • [89]Kulemzina AI, Trifonov VA, Perelman PL, Rubtsova NV, Volobuev V, Ferguson-Smith MA, Stanyon R, Yang F, Graphodatsky AS: Cross-species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages. Chromosome Res 2009, 17:419-436.
  • [90]Volleth M, Heller KG, Pfeiffer RA, Hameister H: A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Research 2002, 10:477-497.
  • [91]Ao L, Mao X, Nie W, Gu X, Feng Q, Wang J, Su W, Wang Y, Volleth M, Yang F: Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Res 2007, 15:257-267.
  • [92]Stanhope MJ, Waddell VG, Madsen O, de Jong W, Hedges SB, Cleven GC, Kao D, Springer MS: Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc Natl Acad Sci USA 1998, 95:9967-9972.
  • [93]Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG, Amrine HM, Stanhope MJ: Endemic African mammals shake the phylogenetic tree. Nature 1997, 388:61-64.
  • [94]Pardini AT, O'Brien PC, Fu B, Bonde RK, Elder FF, Ferguson-Smith MA, Yang F, Robinson TJ: Chromosome painting among Proboscidea, Hyracoidea and Sirenia: support for Paenungulata (Afrotheria, Mammalia) but not Tethytheria. Proc Biol Sci 2007, 274:1333-1340.
  • [95]Kellogg ME, Burkett S, Dennis TR, Stone G, Gray BA, McGuire PM, Zori RT, Stanyon R: Chromosome painting in the manatee supports Afrotheria and Paenungulata. BMC Evol Biol 2007, 7:6. BioMed Central Full Text
  • [96]Nie WH, Fu BY, O'Brien PCM, Wang JH, Su WT, Tanomtong A, Volobouev V, Ferguson-Smith MA, Yang F: Flying lemurs - The 'flying tree shrews'? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade. Bmc Biol 2008., 6
  • [97]Graphodatsky AS, Yang F, Perelman PL, O'Brien PCM, Serdukova NA, Milne BS, Biltueva LS, Fu B, Vorobieva NV, Kawada SI, et al.: Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenetic and Genome Research 2002, 96:137-145.
  • [98]Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W: Using genomic data to unravel the root of the placental mammal phylogeny. Genome Research 2007, 17:413-421.
  • [99]Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of present-day mammals. Nature 2007, 446:507-512.
  • [100]Ensembl Genome Browser [http://www.ensembl.org] webcite
  • [101]Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, Christensen K: Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res 1997, 5:5-11.
  文献评价指标  
  下载次数:66次 浏览次数:36次