| Virology Journal | |
| 18β-glycyrrhetinic acid inhibits rotavirus replication in culture | |
| Nicholas R Faunce1  Jeana M Paulson1  Jay M Hendricks1  Michele E Hardy1  | |
| [1] Immunology and Infectious Diseases, Montana State University, PO Box 173610, Bozeman, MT 59718, USA | |
| 关键词: Antiviral; 18beta-glycyrrhetinic acid; Licorice; Rotavirus; | |
| Others : 1154652 DOI : 10.1186/1743-422X-9-96 |
|
| received in 2011-12-26, accepted in 2012-05-04, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Glycyrrhizin (GA) and primary metabolite 18β-glycyrrhetinic acid (GRA) are pharmacologically active components of the medicinal licorice root, and both have been shown to have antiviral and immunomodulatory properties. Although these properties are well established, the mechanisms of action are not completely understood. In this study, GA and GRA were tested for the ability to inhibit rotavirus replication in cell culture, toward a long term goal of discovering natural compounds that may complement existing vaccines.
Methods
Epithelial cells were treated with GA or GRA various times pre- or post-infection and virus yields were measured by immunofluorescent focus assay. Levels of viral proteins VP2, VP6, and NSP2 in GRA treated cells were measured by immunoblot to determine if there was an effect of GRA treatment on the accumulation of viral protein.
Results
GRA treatment reduced rotavirus yields by 99% when added to infected cultures post-- virus adsorption, whereas virus yields in GA treated cultures were similar to mock treated controls. Time of addition experiments indicated that GRA-mediated replication inhibition likely occurs at a step or steps subsequent to virus entry. The amounts of VP2, VP6 and NSP2 were substantially reduced when GRA was added to cultures up to two hours post-entry.
Conclusions
GRA, but not GA, has significant antiviral activity against rotavirus replication in vitro, and studies to determine whether GRA attenuates rotavirus replication in vivo are underway.
【 授权许可】
2012 Hardy et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150407105640883.pdf | 499KB | ||
| Figure 4. | 36KB | Image | |
| Figure 3. | 11KB | Image | |
| Figure 2. | 37KB | Image | |
| Figure 1. | 60KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Widdowson MA, Steele D, Vojdani J, Wecker J, Parashar U: Global rotavirus surveillance: determining the need and measuring the impact of rotavirus vaccines. J Infect Dis 2009, Suppl 1:S1-S8.
- [2]Vesikari T, Matson DO, Dennehy P, Van Damme P, Santosham M, Rodriguez Z, Dallas MJ, Heyse JF, Goveia MG, Black SB, et al.: Safety and efficacy of a pentavalent human--bovine (WC3) reassortant rotavirus vaccine. N Engl J Med 2006, 354(1):23-33.
- [3]Ruiz-Palacios GM, Perez-Schael I, Velazquez FR, Abate H, Breuer T, Clemens SC, Cheuvart B, Espinoza F, Gillard P, Innis BL, et al.: Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 2006, 354(1):11-22.
- [4]O'Ryan M, Lucero Y, Linhares AC: Rotarix (R): vaccine performance 6 years postlicensure. Expert Rev Vaccines 2011, 10(12):1645-1659.
- [5]Ciarlet M, Schodel F: Development of a rotavirus vaccine: clinical safety, immunogenicity, and efficacy of the pentavalent rotavirus vaccine, RotaTeq. Vaccine 2009, 27 Suppl 6:G72-G81.
- [6]Zaman K, Dang DA, Victor JC, Shin S, Yunus M, Dallas MJ, Podder G, Vu DT, Le TP, Luby SP, et al.: Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double--blind, placebo--controlled trial. Lancet 2010, 376(9741):615-623.
- [7]Armah GE, Sow SO, Breiman RF, Dallas MJ, Tapia MD, Feikin DR, Binka FN, Steele AD, Laserson KF, Ansah NA, et al.: Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub--Saharan Africa: a randomised, double--blind, placebo--controlled trial. Lancet 2010, 376:606-614.
- [8]Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D: A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol 2005, 99(3):317-324.
- [9]Robbers JSS MK, Tyler VE: Pharmacognosy and Pharmacobiotechnology. Williams and Wilkins, Baltimore; 1996.
- [10]Barnes JA, Anderson LA, Phillipson JD: Herbal Medicine. Pharmaceutical Press, London; 2002.
- [11]Hattori M, Sakamoto T, Kobashi K, Namba T: Metabolism of glycyrrhizin by human intestinal flora. Planta Med 1983, 48(5):38-42.
- [12]Hattori M, Sakamoto T, Yamagishi T, Sakamoto K, Konishi K, Kobashi K, Namba T: Metabolism of glycyrrhizin by human intestinal flora. II. Isolation and characterization of human intestinal bacteria capable of metabolizing glycyrrhizin and related compounds. Chem Pharm Bull (Tokyo) 1985, 33(1):210-217.
- [13]van Rossum TG, Vulto AG, de Man RA, Brouwer JT, Schalm SW: Review article: glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther 1998, 12(3):199-205.
- [14]Orlent H, Hansen BE, Willems M, Brouwer JT, Huber R, Kullak-Ublick GA, Gerken G, Zeuzem S, Nevens F, Tielemans WC, et al.: Biochemical and histological effects of 26 weeks of glycyrrhizin treatment in chronic hepatitis C: a randomized phase II trial. J Hepatol 2006, 45(4):539-546.
- [15]Ikeda K, Arase Y, Kobayashi M, Saitoh S, Someya T, Hosaka T, Sezaki H, Akuta N, Suzuki Y, Suzuki F, et al.: A long--term glycyrrhizin injection therapy reduces hepatocellular carcinogenesis rate in patients with interferon--resistant active chronic hepatitis C: a cohort study of 1249 patients. Dig Dis Sci 2006, 51(3):603-609.
- [16]Arase Y, Ikeda K, Murashima N, Chayama K, Tsubota A, Koida I, Suzuki Y, Saitoh S, Kobayashi M, Kumada H: The long term efficacy of glycyrrhizin in chronic hepatitis C patients. Cancer 1997, 79(8):1494-1500.
- [17]Utsunomiya T, Kobayashi M, Pollard RB, Suzuki F: Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob Agents Chemother 1997, 41(3):551-556.
- [18]Pompei R, Flore O, Marccialis MA, Pani A, Loddo B: Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 1979, 281(5733):689-690.
- [19]Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, Bielenberg J: Antiviral effects of Glycyrrhiza species. Phytother Res 2008, 22(2):141-148.
- [20]Wolkerstorfer A, Kurz H, Bachhofner N, Szolar OH: Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral Res 2009, 83(2):171-178.
- [21]Harada S: The broad anti--viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV--1 envelope. Biochem J 2005, 392(Pt 1):191-199.
- [22]Michaelis M, Geiler J, Naczk P, Sithisarn P, Leutz A, Doerr HW, Cinatl J: Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus--infected cells and inhibits virus replication and pro--inflammatory gene expression. PLoS One 2011, 6(5):e19705.
- [23]Armanini D, Fiore C, Mattarello MJ, Bielenberg J, Palermo M: History of the endocrine effects of licorice. Experimental and Clinical Endocrinology and Diabetes 2002, 110:257-261.
- [24]Jeong HG, Kim JY: Induction of inducible nitric oxide synthase expression by 18beta--glycyrrhetinic acid in macrophages. FEBS Lett 2002, 513(2-3):208-212.
- [25]Shaneyfelt ME, Burke AD, Graff JW, Jutila MA, Hardy ME: Natural products that reduce rotavirus infectivity identified by a cell--based moderate--throughput screening assay. Virol J 2006, 3:68. BioMed Central Full Text
- [26]Kang OH, Kim JA, Choi YA, Park HJ, Kim DK, An YH, Choi SC, Yun KJ, Nah YH, Cai XF, et al.: Inhibition of interleukin--8 production in the human colonic epithelial cell line HT--29 by 18 beta--glycyrrhetinic acid. Int J Mol Med 2005, 15(6):981-985.
- [27]Wang CY, Kao TC, Lo WH, Yen GC: Glycyrrhizic acid and 18beta--glycyrrhetinic acid modulate lipopolysaccharide--induced inflammatory response by suppression of NF--kappaB through PI3K p110delta and p110gamma inhibitions. J Agric Food Chem 2011, 59(14):7726-7733.
- [28]Ukil A, Biswas A, Das T, Das PK: 18 Beta--glycyrrhetinic acid triggers curative Th1 response and nitric oxide up--regulation in experimental visceral leishmaniasis associated with the activation of NF--kappa B. J Immunol 2005, 175(2):1161-1169.
- [29]Li HE, Qiu JZ, Yang ZQ, Dong J, Wang JF, Luo MJ, Pan J, Dai XH, Zhang Y, Song BL, et al.: Glycyrrhetinic acid protects mice from Staphylococcus aureus pneumonia. Fitoterapia 2012, 83(1):241-248.
- [30]Mendez E, Lopez S, Cuadras MA, Romero P, Arias CF: Entry of rotaviruses is a multistep process. Virology 1999, 263(2):450-459.
- [31]Sanchez-San Martin C, Lopez T, Arias CF, Lopez S: Characterization of rotavirus cell entry. J Virol 2004, 78(5):2310-2318.
- [32]Asl MN, Hosseinzadeh H: Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008, 22(6):709-724.
- [33]Pompei R, Laconi S, Ingianni A: Antiviral properties of glycyrrhizic acid and its semisynthetic derivatives. Mini Rev Med Chem 2009, 9(8):996-1001.
- [34]Krahenbuhl S, Hasler F, Frey BM, Frey FJ, Brenneisen R, Krapf R: Kinetics and dynamics of orally administered 18 beta--glycyrrhetinic acid in humans. J Clin Endocrinol Metab 1994, 78(3):581-585.
- [35]Graff JW, Ettayebi K, Hardy ME: Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome--dependent degradation of beta--TrCP: a novel mechanism of IFN antagonism. PLoS Pathog 2009, 5(1):e1000280.
- [36]Chang YL, Chen CL, Kuo CL, Chen BC, You JS: Glycyrrhetinic acid inhibits ICAM--1 expression via blocking JNK and NF--kappaB pathways in TNF--alpha--activated endothelial cells. Acta Pharmacol Sin 2010, 31(5):546-553.
- [37]Kao TC, Shyu MH, Yen GC: Glycyrrhizic acid and 18beta--glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3beta signaling and glucocorticoid receptor activation. J Agric Food Chem 2010, 58(15):8623-8629.
- [38]Kao TC, Shyu MH, Yen GC: Neuroprotective effects of glycyrrhizic acid and 18beta--glycyrrhetinic acid in PC12 cells via modulation of the PI3K/Akt pathway. J Agric Food Chem 2009, 57(2):754-761.
- [39]Halasz P, Holloway G, Turner SJ, Coulson BS: Rotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3--kinase--dependent pathway, resulting in increased cell adhesion and virus yield. J Virol 2008, 82(1):148-160.
- [40]Zambrano JL, Ettayebi K, Maaty WS, Faunce NR, Bothner B, Hardy ME: Rotavirus infection activates the UPR but modulates its activity. Virol J 2011, 8:359. BioMed Central Full Text
PDF