期刊论文详细信息
Virology Journal
Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles
Tom J Blanchard2  James P Stewart4  Michael A Skinner1  Donald S Anson6  Brian Getty4  Stuart D Dowall3  Mike J Dennis3  Sally A Sharpe3  Simon H Bridge5 
[1] Vaccine Vector Group, Dept of Virology, Imperial College London, London, UK;Consultant in Infectious Diseases & Tropical Medicine, Department for Infectious Diseases, North Manchester General Hospital, Delaunay's Road, Manchester M8 5RB, UK;Health Protection Agency, Porton Down, Salisbury, UK;Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK;Institute of Cellular Medicine, Newcastle University, UK;Gene Technology Unit, Department of Genetic Medicine, Women's and Children's Hospital, Adelaide, Australia
关键词: virus-like particle;    human complement protein C3d;    cholera toxin B;    fowlpox virus;    modified vaccinia virus Ankara;    recombinant poxvirus;    broadly reactive neutralising antibodies;    Prime-boost HIV vaccine;   
Others  :  1156143
DOI  :  10.1186/1743-422X-8-429
 received in 2011-08-24, accepted in 2011-09-07,  发布年份 2011
PDF
【 摘 要 】

Background

There is renewed interest in the development of poxvirus vector-based HIV vaccines due to the protective effect observed with repeated recombinant canarypox priming with gp120 boosting in the recent Thai placebo-controlled trial. This study sought to investigate whether a heterologous prime-boost-boost vaccine regimen in Chinese cynomolgus macaques with a DNA vaccine and recombinant poxviral vectors expressing HIV virus-like particles bearing envelopes derived from the most prevalent clades circulating in sub-Saharan Africa, focused the antibody response to shared neutralising epitopes.

Methods

Three Chinese cynomolgus macaques were immunised via intramuscular injections using a regimen composed of a prime with two DNA vaccines expressing clade A Env/clade B Gag followed by boosting with recombinant fowlpox virus expressing HIV-1 clade D Gag, Env and cholera toxin B subunit followed by the final boost with recombinant modified vaccinia virus Ankara expressing HIV-1 clade C Env, Gag and human complement protein C3d. We measured the macaque serum antibody responses by ELISA, enumerated T cell responses by IFN-γ ELISpot and assessed seroneutralisation of HIV-1 using the TZM-bl β-galactosidase assay with primary isolates of HIV-1.

Results

This study shows that large and complex synthetic DNA sequences can be successfully cloned in a single step into two poxvirus vectors: MVA and FPV and the recombinant poxviruses could be grown to high titres. The vaccine candidates showed appropriate expression of recombinant proteins with the formation of authentic HIV virus-like particles seen on transmission electron microscopy. In addition the b12 epitope was shown to be held in common by the vaccine candidates using confocal immunofluorescent microscopy. The vaccine candidates were safely administered to Chinese cynomolgus macaques which elicited modest T cell responses at the end of the study but only one out of the three macaques elicited an HIV-specific antibody response. However, the antibodies did not neutralise primary isolates of HIV-1 or the V3-sensitive isolate SF162 using the TZM-bl β-galactosidase assay.

Conclusions

MVA and FP9 are ideal replication-deficient viral vectors for HIV-1 vaccines due to their excellent safety profile for use in humans. This study shows this novel prime-boost-boost regimen was poorly immunogenic in Chinese cynomolgus macaques.

【 授权许可】

   
2011 Bridge et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407122321254.pdf 7509KB PDF download
Figure 6. 84KB Image download
Figure 5. 43KB Image download
Figure 4. 46KB Image download
Figure 3. 71KB Image download
Figure 2. 223KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, van Griensven F, Hu D, Tappero JW, Choopanya K: Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis 2006, 194(12):1661-1671.
  • [2]Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, et al.: Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008, 372(9653):1881-1893.
  • [3]McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, Janes H, Defawe OD, Carter DK, Hural J, Akondy R, et al.: HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 2008, 372(9653):1894-1905.
  • [4]Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, et al.: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009, 361(23):2209-2220.
  • [5]Stickl H, Hochstein-Mintzel V, Mayr A, Huber HC, Schafer H, Holzner A: [MVA vaccination against smallpox: clinical tests with an attenuated live vaccinia virus strain (MVA) (author's transl)]. Dtsch Med Wochenschr 1974, 99(47):2386-2392.
  • [6]Webster DP, Dunachie S, McConkey S, Poulton I, Moore AC, Walther M, Laidlaw SM, Peto T, Skinner MA, Gilbert SC, et al.: Safety of recombinant fowlpox strain FP9 and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine 2006, 24(15):3026-3034.
  • [7]Webster DP, Dunachie S, Vuola JM, Berthoud T, Keating S, Laidlaw SM, McConkey SJ, Poulton I, Andrews L, Andersen RF, et al.: Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc Natl Acad Sci USA 2005, 102(13):4836-4841.
  • [8]Blanchard TJ, Alcami A, Andrea P, Smith GL: Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. The Journal of general virology 1998, 79(Pt 5):1159-1167.
  • [9]Brown M, Zhang Y, Dermine S, de Wynter EA, Hart C, Kitchener H, Stern PL, Skinner MA, Stacey SN: Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T lymphocyte activity. Gene Ther 2000, 7(19):1680-1689.
  • [10]Alcock R, Cottingham MG, Rollier CS, Furze J, De Costa SD, Hanlon M, Spencer AJ, Honeycutt JD, Wyllie DH, Gilbert SC, et al.: Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Science translational medicine 2010, 2(19):19ra12.
  • [11]Cottingham MG, van Maurik A, Zago M, Newton AT, Anderson RJ, Howard MK, Schneider J, Skinner MA: Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies. Clin Vaccine Immunol 2006, 13(7):747-757.
  • [12]Hanke T, Blanchard TJ, Schneider J, Ogg GS, Tan R, Becker M, Gilbert SC, Hill AV, Smith GL, McMichael A: Immunogenicities of intravenous and intramuscular administrations of modified vaccinia virus Ankara-based multi-CTL epitope vaccine for human immunodeficiency virus type 1 in mice. The Journal of general virology 1998, 79(Pt 1):83-90.
  • [13]Hanke T, Neumann VC, Blanchard TJ, Sweeney P, Hill AV, Smith GL, McMichael A: Effective induction of HIV-specific CTL by multi-epitope using gene gun in a combined vaccination regime. Vaccine 1999, 17(6):589-596.
  • [14]Amara RR, Villinger F, Altman JD, Lydy SL, O'Neil SP, Staprans SI, Montefiori DC, Xu Y, Herndon JG, Wyatt LS, et al.: Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 2001, 292(5514):69-74.
  • [15]Hanke T, Samuel RV, Blanchard TJ, Neumann VC, Allen TM, Boyson JE, Sharpe SA, Cook N, Smith GL, Watkins DI, et al.: Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. Journal of virology 1999, 73(9):7524-7532.
  • [16]Kent SJ, Zhao A, Best SJ, Chandler JD, Boyle DB, Ramshaw IA: Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. Journal of virology 1998, 72(12):10180-10188.
  • [17]Santra S, Sun Y, Parvani JG, Philippon V, Wyand MS, Manson K, Gomez-Yafal A, Mazzara G, Panicali D, Markham PD, et al.: Heterologous prime/boost immunization of rhesus monkeys by using diverse poxvirus vectors. Journal of virology 2007, 81(16):8563-8570.
  • [18]Seth A, Ourmanov I, Kuroda MJ, Schmitz JE, Carroll MW, Wyatt LS, Moss B, Forman MA, Hirsch VM, Letvin NL: Recombinant modified vaccinia virus Ankara-simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer. Proc Natl Acad Sci USA 1998, 95(17):10112-10116.
  • [19]Cebere I, Dorrell L, McShane H, Simmons A, McCormack S, Schmidt C, Smith C, Brooks M, Roberts JE, Darwin SC, et al.: Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteers. Vaccine 2006, 24(4):417-425.
  • [20]Goepfert PA, Elizaga ML, Sato A, Qin L, Cardinali M, Hay CM, Hural J, DeRosa SC, DeFawe OD, Tomaras GD, et al.: Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis 2011, 203(5):610-619.
  • [21]Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, Mahmoud A, Pinheiro S, Gillespie G, Brown D, Loach V, et al.: Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. Journal of virology 2006, 80(10):4717-4728.
  • [22]Guimaraes-Walker A, Mackie N, McCormack S, Hanke T, Schmidt C, Gilmour J, Barin B, McMichael A, Weber J, Legg K, et al.: Lessons from IAVI-006, a phase I clinical trial to evaluate the safety and immunogenicity of the pTHr.HIVA DNA and MVA.HIVA vaccines in a prime-boost strategy to induce HIV-1 specific T-cell responses in healthy volunteers. Vaccine 2008, 26(51):6671-6677.
  • [23]Hemachandra A, Puls RL, Sirivichayakul S, Kerr S, Thantiworasit P, Ubolyam S, Cooper DA, Emery S, Phanuphak P, Kelleher A, et al.: An HIV-1 clade A/E DNA prime, recombinant fowlpox virus boost vaccine is safe, but non-immunogenic in a randomized phase I/IIa trial in Thai volunteers at low risk of HIV infection. Hum Vaccin 2010, 6(10):835-840.
  • [24]Mwau M, Cebere I, Sutton J, Chikoti P, Winstone N, Wee EG, Beattie T, Chen YH, Dorrell L, McShane H, et al.: A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. The Journal of general virology 2004, 85(Pt 4):911-919.
  • [25]Sewell AK, Price DA, Oxenius A, Kelleher AD, Phillips RE: Cytotoxic T lymphocyte responses to human immunodeficiency virus: control and escape. Stem Cells 2000, 18(4):230-244.
  • [26]Schneider J, Gilbert SC, Blanchard TJ, Hanke T, Robson KJ, Hannan CM, Becker M, Sinden R, Smith GL, Hill AV: Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nature medicine 1998, 4(4):397-402.
  • [27]McConkey SJ, Reece WH, Moorthy VS, Webster D, Dunachie S, Butcher G, Vuola JM, Blanchard TJ, Gothard P, Watkins K, et al.: Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nature medicine 2003, 9(6):729-735.
  • [28]McMichael AJ: HIV vaccines. Annu Rev Immunol 2006, 24:227-255.
  • [29]Barouch DH: Challenges in the development of an HIV-1 vaccine. Nature 2008, 455(7213):613-619.
  • [30]Johnston MI, Fauci AS: An HIV vaccine--evolving concepts. N Engl J Med 2007, 356(20):2073-2081.
  • [31]Walker BD, Burton DR: Toward an AIDS vaccine. Science 2008, 320(5877):760-764.
  • [32]Walker LM, Burton DR: Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Curr Opin Immunol 2010, 22(3):358-366.
  • [33]Mascola JR, Montefiori DC: The role of antibodies in HIV vaccines. Annu Rev Immunol 2010, 28:413-444.
  • [34]Stamatatos L, Morris L, Burton DR, Mascola JR: Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nature medicine 2009, 15(8):866-870.
  • [35]Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, et al.: Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009, 326(5950):285-289.
  • [36]Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC: Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 1992, 258(5090):1938-1941.
  • [37]Koff WC, Johnson PR, Watkins DI, Burton DR, Lifson JD, Hasenkrug KJ, McDermott AB, Schultz A, Zamb TJ, Boyle R, et al.: HIV vaccine design: insights from live attenuated SIV vaccines. Nat Immunol 2006, 7(1):19-23.
  • [38]Learmont JC, Geczy AF, Mills J, Ashton LJ, Raynes-Greenow CH, Garsia RJ, Dyer WB, McIntyre L, Oelrichs RB, Rhodes DI, et al.: Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1. A report from the Sydney Blood Bank Cohort. N Engl J Med 1999, 340(22):1715-1722.
  • [39]Roy P, Noad R: Virus-like particles as a vaccine delivery system: myths and facts. Adv Exp Med Biol 2009, 655:145-158.
  • [40]Amara RR, Villinger F, Staprans SI, Altman JD, Montefiori DC, Kozyr NL, Xu Y, Wyatt LS, Earl PL, Herndon JG, et al.: Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.6P mucosal challenge by modified vaccinia virus Ankara (MVA) and DNA/MVA vaccines. Journal of virology 2002, 76(15):7625-7631.
  • [41]Crooks ET, Moore PL, Franti M, Cayanan CS, Zhu P, Jiang P, de Vries RP, Wiley C, Zharkikh I, Schulke N, et al.: A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology 2007, 366(2):245-262.
  • [42]Chege GK, Thomas R, Shephard EG, Meyers A, Bourn W, Williamson C, Maclean J, Gray CM, Rybicki EP, Williamson AL: A prime-boost immunisation regimen using recombinant BCG and Pr55(gag) virus-like particle vaccines based on HIV type 1 subtype C successfully elicits Gag-specific responses in baboons. Vaccine 2009, 27(35):4857-4866.
  • [43]Ellenberger D, Wyatt L, Li B, Buge S, Lanier N, Rodriguez IV, Sariol CA, Martinez M, Monsour M, Vogt J, et al.: Comparative immunogenicity in rhesus monkeys of multi-protein HIV-1 (CRF02_AG) DNA/MVA vaccines expressing mature and immature VLPs. Virology 2005, 340(1):21-32.
  • [44]Ellenberger D, Otten RA, Li B, Aidoo M, Rodriguez IV, Sariol CA, Martinez M, Monsour M, Wyatt L, Hudgens MG, et al.: HIV-1 DNA/MVA vaccination reduces the per exposure probability of infection during repeated mucosal SHIV challenges. Virology 2006, 352(1):216-225.
  • [45]McBurney SP, Young KR, Ross TM: Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. Virology 2007, 358(2):334-346.
  • [46]McBurney SP, Ross TM: Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine 2009, 27(32):4337-4349.
  • [47]Robinson HL, Sharma S, Zhao J, Kannanganat S, Lai L, Chennareddi L, Yu T, Montefiori DC, Amara RR, Wyatt LS, et al.: Immunogenicity in macaques of the clinical product for a clade B DNA/MVA HIV vaccine: elicitation of IFN-gamma, IL-2, and TNF-alpha coproducing CD4 and CD8 T cells. AIDS research and human retroviruses 2007, 23(12):1555-1562.
  • [48]Visciano ML, Diomede L, Tagliamonte M, Tornesello ML, Asti V, Bomsel M, Buonaguro FM, Lopalco L, Buonaguro L: Generation of HIV-1 Virus-Like Particles expressing different HIV-1 glycoproteins. Vaccine 2011, 29(31):4903-4912.
  • [49]Mbow ML, De Gregorio E, Valiante NM, Rappuoli R: New adjuvants for human vaccines. Curr Opin Immunol 2010, 22(3):411-416.
  • [50]Buonaguro FM, Tornesello ML, Buonaguro L: New adjuvants in evolving vaccine strategies. Expert Opin Biol Ther 2011, 11(7):827-832.
  • [51]Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT: C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996, 271(5247):348-350.
  • [52]Ross TM, Xu Y, Bright RA, Robinson HL: C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge. Nat Immunol 2000, 1(2):127-131.
  • [53]Green TD, Montefiori DC, Ross TM: Enhancement of antibodies to the human immunodeficiency virus type 1 envelope by using the molecular adjuvant C3d. Journal of virology 2003, 77(3):2046-2055.
  • [54]Haas KM, Toapanta FR, Oliver JA, Poe JC, Weis JH, Karp DR, Bower JF, Ross TM, Tedder TF: Cutting edge: C3d functions as a molecular adjuvant in the absence of CD21/35 expression. J Immunol 2004, 172(10):5833-5837.
  • [55]Ross TM, Xu Y, Green TD, Montefiori DC, Robinson HL: Enhanced avidity maturation of antibody to human immunodeficiency virus envelope: DNA vaccination with gp120-C3d fusion proteins. AIDS research and human retroviruses 2001, 17(9):829-835.
  • [56]Langridge W, Denes B, Fodor I: Cholera toxin B subunit modulation of mucosal vaccines for infectious and autoimmune diseases. Curr Opin Investig Drugs 2010, 11(8):919-928.
  • [57]Bruhl P, Kerschbaum A, Eibl MM, Mannhalter JW: An experimental prime-boost regimen leading to HIV type 1-specific mucosal and systemic immunity in BALB/c mice. AIDS research and human retroviruses 1998, 14(5):401-407.
  • [58]Gherardi MM, Perez-Jimenez E, Najera JL, Esteban M: Induction of HIV immunity in the genital tract after intranasal delivery of a MVA vector: enhanced immunogenicity after DNA prime-modified vaccinia virus Ankara boost immunization schedule. J Immunol 2004, 172(10):6209-6220.
  • [59]Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R: Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med 2004, 350(9):896-903.
  • [60]Haynes BF, Fleming J, St Clair EW, Katinger H, Stiegler G, Kunert R, Robinson J, Scearce RM, Plonk K, Staats HF, et al.: Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 2005, 308(5730):1906-1908.
  • [61]Haynes BF, Nicely NI, Alam SM: HIV-1 autoreactive antibodies: are they good or bad for HIV-1 prevention? Nat Struct Mol Biol 2010, 17(5):543-545.
  • [62]Fuller M, Anson DS: Helper plasmids for production of HIV-1-derived vectors. Hum Gene Ther 2001, 12(17):2081-2093.
  • [63]Davis D, Donners H, Willems B, Ntemgwa M, Vermoesen T, van der Groen G, Janssens W: Neutralization kinetics of sensitive and resistant subtype B primary human immunodeficiency virus type 1 isolates. J Med Virol 2006, 78(7):864-876.
  • [64]Montefiori DC, Mascola JR: Neutralizing antibodies against HIV-1: can we elicit them with vaccines and how much do we need? Curr Opin HIV AIDS 2009, 4(5):347-351.
  • [65]Willey R, Nason MC, Nishimura Y, Follmann DA, Martin MA: Neutralizing antibody titers conferring protection to macaques from a simian/human immunodeficiency virus challenge using the TZM-bl assay. AIDS research and human retroviruses 2010, 26(1):89-98.
  • [66]Sundling C, O'Dell S, Douagi I, Forsell MN, Morner A, Lore K, Mascola JR, Wyatt RT, Karlsson Hedestam GB: Immunization with wild-type or CD4 binding-defective HIV-1 Env trimers reduces viremia equivalently following heterologous SHIV challenge. Journal of virology 2010.
  • [67]Gray ES, Moore PL, Choge IA, Decker JM, Bibollet-Ruche F, Li H, Leseka N, Treurnicht F, Mlisana K, Shaw GM, et al.: Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection. Journal of virology 2007, 81(12):6187-6196.
  • [68]Richman DD, Wrin T, Little SJ, Petropoulos CJ: Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci USA 2003, 100(7):4144-4149.
  • [69]Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, et al.: Antibody neutralization and escape by HIV-1. Nature 2003, 422(6929):307-312.
  • [70]Hicar MD, Chen X, Briney B, Hammonds J, Wang JJ, Kalams S, Spearman PW, Crowe JE Jr: Pseudovirion particles bearing native HIV envelope trimers facilitate a novel method for generating human neutralizing monoclonal antibodies against HIV. J Acquir Immune Defic Syndr 2010, 54(3):223-235.
  • [71]Gao F, Liao HX, Hahn BH, Letvin NL, Korber BT, Haynes BF: Centralized HIV-1 envelope immunogens and neutralizing antibodies. Curr HIV Res 2007, 5(6):572-577.
  • [72]Bower JF, Green TD, Ross TM: DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1. Virology 2004, 328(2):292-300.
  • [73]Logan GJ, Wang L, Zheng M, Coppel RL, Alexander IE: Antigen fusion with C3d3 augments or inhibits humoral immunity to AAV genetic vaccines in a transgene-dependent manner. Immunol Cell Biol 2010, 88(2):228-232.
  • [74]Maeyama J, Isaka M, Yasuda Y, Matano K, Taniguchi T, Morokuma K, Ohkuma K, Tochikubo K, Goto N: Effects of recombinant cholera toxin B subunit on IL-1beta production by macrophages in vitro. Microbiol Immunol 2002, 46(9):593-599.
  • [75]Berkower I, Patel C, Ni Y, Virnik K, Xiang Z, Spadaccini A: Targeted deletion in the beta20-beta21 loop of HIV envelope glycoprotein gp120 exposes the CD4 binding site for antibody binding. Virology 2008, 377(2):330-338.
  • [76]Kwong PD, Wyatt R, Sattentau QJ, Sodroski J, Hendrickson WA: Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. Journal of virology 2000, 74(4):1961-1972.
  • [77]Benferhat R, Krust B, Rey-Cuille MA, Hovanessian AG: The caveolin-1 binding domain of HIV-1 glycoprotein gp41 (CBD1) contains several overlapping neutralizing epitopes. Vaccine 2009, 27(27):3620-3630.
  • [78]Hovanessian AG, Briand JP, Said EA, Svab J, Ferris S, Dali H, Muller S, Desgranges C, Krust B: The caveolin-1 binding domain of HIV-1 glycoprotein gp41 is an efficient B cell epitope vaccine candidate against virus infection. Immunity 2004, 21(5):617-627.
  • [79]Mann AM, Rusert P, Berlinger L, Kuster H, Gunthard HF, Trkola A: HIV sensitivity to neutralization is determined by target and virus producer cell properties. AIDS (London, England) 2009, 23(13):1659-1667.
  • [80]Fenyo EM, Heath A, Dispinseri S, Holmes H, Lusso P, Zolla-Pazner S, Donners H, Heyndrickx L, Alcami J, Bongertz V, et al.: International network for comparison of HIV neutralization assays: the NeutNet report. PloS one 2009, 4(2):e4505..
  • [81]Polonis VR, Brown BK, Rosa Borges A, Zolla-Pazner S, Dimitrov DS, Zhang MY, Barnett SW, Ruprecht RM, Scarlatti G, Fenyo EM, et al.: Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation of the antibody response to infection and vaccination. Virology 2008, 375(2):315-320.
  • [82]Makitalo B, Lundholm P, Hinkula J, Nilsson C, Karlen K, Morner A, Sutter G, Erfle V, Heeney JL, Wahren B, et al.: Enhanced cellular immunity and systemic control of SHIV infection by combined parenteral and mucosal administration of a DNA prime MVA boost vaccine regimen. The Journal of general virology 2004, 85(Pt 8):2407-2419.
  • [83]Maggiorella MT, Sernicola L, Crostarosa F, Belli R, Pavone-Cossut MR, Macchia I, Farcomeni S, Tenner-Racz K, Racz P, Ensoli B, et al.: Multiprotein genetic vaccine in the SIV-Macaca animal model: a promising approach to generate sterilizing immunity to HIV infection. Journal of medical primatology 2007, 36(4-5):180-194.
  • [84]Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D: Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. Journal of virology 1998, 72(4):2855-2864.
  • [85]Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC: Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002, 46(6):1896-1905.
  • [86]Chakrabarti S, Brechling K, Moss B: Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 1985, 5(12):3403-3409.
  • [87]Qingzhong Y, Barrett T, Brown TD, Cook JK, Green P, Skinner MA, Cavanagh D: Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F). Vaccine 1994, 12(6):569-573.
  • [88]Abacioglu YH, Fouts TR, Laman JD, Claassen E, Pincus SH, Moore JP, Roby CA, Kamin-Lewis R, Lewis GK: Epitope mapping and topology of baculovirus-expressed HIV-1 gp160 determined with a panel of murine monoclonal antibodies. AIDS research and human retroviruses 1994, 10(4):371-381.
  • [89]Simon JH, Fouchier RA, Southerling TE, Guerra CB, Grant CK, Malim MH: The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. Journal of virology 1997, 71(7):5259-5267.
  • [90]Burton DR, Barbas CF, Persson MA, Koenig S, Chanock RM, Lerner RA: A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci USA 1991, 88(22):10134-10137.
  • [91]Burton DR, Pyati J, Koduri R, Sharp SJ, Thornton GB, Parren PW, Sawyer LS, Hendry RM, Dunlop N, Nara PL, et al.: Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 1994, 266(5187):1024-1027.
  • [92]Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore JP, Katinger H: Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. Journal of virology 1996, 70(2):1100-1108.
  • [93]Purtscher M, Trkola A, Gruber G, Buchacher A, Predl R, Steindl F, Tauer C, Berger R, Barrett N, Jungbauer A, et al.: A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS research and human retroviruses 1994, 10(12):1651-1658.
  文献评价指标  
  下载次数:82次 浏览次数:13次