期刊论文详细信息
Particle and Fibre Toxicology
A system to simultaneously detect tick-borne pathogens based on the variability of the 16S ribosomal genes
Imrich Barák2  Marketa Derdáková1  Jana Melničáková2 
[1] Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovak Republic;Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravska cesta 21, 845 51, Bratislava, Slovak Republic
关键词: Quantitative PCR;    DNA microarray;    Tick-borne bacteria;   
Others  :  824579
DOI  :  10.1186/1756-3305-6-269
 received in 2013-08-01, accepted in 2013-09-12,  发布年份 2013
PDF
【 摘 要 】

Background

DNA microarrays can be used to quickly and sensitively identify several different pathogens in one step. Our previously developed DNA microarray, based on the detection of variable regions in the 16S rDNA gene (rrs), which are specific for each selected bacterial genus, allowed the concurrent detection of Borrelia spp., Anaplasma spp., Francisella spp., Rickettsia spp. and Coxiella spp.

Methods

In this study, we developed a comprehensive detection system consisting of a second generation DNA microarray and quantitative PCRs. New oligonucleotide capture probes specific for Borrelia burgdorferi s.l. genospecies and Candidatus Neoehrlichia mikurensis were included. This new DNA microarray system required substantial changes in solution composition, hybridization conditions and post-hybridization washes.

Results

This second generation chip displayed high specificity and sensitivity. The specificity of the capture probes was tested by hybridizing the DNA microarrays with Cy5-labeled, PCR-generated amplicons encoding the rrs genes of both target and non-target bacteria. The detection limit was determined to be 103 genome copies, which corresponds to 1–2 pg of DNA. A given sample was evaluated as positive if its mean fluorescence was at least 10% of the mean fluorescence of a positive control. Those samples with fluorescence close to the threshold were further analyzed using quantitative PCRs, developed to identify Francisella spp., Rickettsia spp. and Coxiella spp. Like the DNA microarray, the qPCRs were based on the genus specific variable regions of the rrs gene. No unspecific cross-reactions were detected. The detection limit for Francisella spp. was determined to be only 1 genome copy, for Coxiella spp. 10 copies, and for Rickettsia spp., 100 copies.

Conclusions

Our detection system offers a rapid method for the comprehensive identification of tick-borne bacteria, which is applicable to clinical samples. It can also be used to identify both pathogenic and endosymbiontic bacteria in ticks for eco-epidemiological studies, tick laboratory colony testing, and many other applications.

【 授权许可】

   
2013 Melničáková et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713035910671.pdf 1069KB PDF download
Figure 3. 52KB Image download
Figure 2. 42KB Image download
Figure 1. 143KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Franke J, Hildebrandt A, Dorn W: Exploring gaps in our knowledge on Lyme borreliosis spirochaetes–updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 2013, 4:11-25.
  • [2]Van Dam AP, Kuiper H, Vos K, Widjojokusumo A, de Jongh BM, Spanjaard L, Ramselaar AC, Kramer MD: Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 1993, 17:708-717.
  • [3]Gern L: Borrelia burgdorferi sensu lato, the agent of lyme borreliosis: life in the wilds. Parasite 2008, 15:244-247. Review
  • [4]Margos G, Vollmer SA, Ogden NH, Fish D: Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 2011, 11:1545-1563.
  • [5]Bunikis J, Tsao J, Garpmo U, Berglund J, Fish D, Barbour AG: Typing of Borrelia relapsing fever group strains. Emerg Infect Dis 2004, 10:1661-1664.
  • [6]Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR: Reorganization of Genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales; unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia, and Ehrlichia with Neorickettsia; description of six new species combinations; and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophilum. Int J Syst Evol Microbiol 2001, 51:2145-2165.
  • [7]Woldehiwet Z: The natural history of Anaplasma phagocytophilum. Vet Parasitol 2010, 167:108-122.
  • [8]Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H, Suto C, Shibata S, Zhang C, Tsuji M: Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol 2004, 54:1837-1843.
  • [9]Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wennerås C: First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol 2010, 48:1956-1959.
  • [10]Fehr JS, Bloemberg GV, Ritter C, Hombach M, Lüscher TF, Weber R, Keller PM: Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg Infect Dis 2010, 16:1127-1129.
  • [11]Pekova S, Vydra J, Kabickova H, Frankova S, Haugvicova R, Mazal O, Cmejla R, Hardekopf DW, Jancuskova T, Kozak T: Candidatus Neoehrlichia mikurensis infection identified in 2 hematooncologic patients: benefit of molecular techniques for rare pathogen detection. Diagn Microbiol Infect Dis 2011, 69:266-270.
  • [12]Von Loewenich FD, Geissdörfer W, Disqué C, Matten J, Schett G, Sakka SG, Bogdan C: Detection of “Candidatus Neoehrlichia mikurensis” in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol 2010, 48:2630-2635.
  • [13]Sjöstedt A: Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci 2007, 1105:1-29.
  • [14]Rath N, Rath A: Rickettsial Infections: Indian perspective. Indian Pediatr 2010, 47:157-164.
  • [15]Beati L, Péter O, Burgdorfer W, Aeschlimann A, Raoult D: Confirmation that Rickettsia helvetica sp. nov. is a distinct species of the spotted fever group of rickettsiae. Int J Syst Bacteriol 1993, 43:521-526.
  • [16]Beati L, Meskini M, Thiers B, Raoult D: Rickettsia aeschlimannii sp. nov., a new spotted fever group rickettsia associated with Hyalomma marginatum ticks. Int J Syst Bacteriol 1997, 47:548-554.
  • [17]Cowan G: Rickettsial diseases: the typhus group of fevers–a review. Postgrad Med J 2000, 76:269-272.
  • [18]La Scola B, Raoult D: Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol 1997, 35:2715-2727.
  • [19]Li H, Jiang JF, Liu W, Zheng YC, Huo QB, Tang K, Zuo SY, Liu K, Jiang BG, Yang H, Cao WC: Human Infection with Candidatus Neoehrlichia mikurensis, China. Emerg Infect Dis 2012, 18:1636-1639.
  • [20]Courtney JW, Kostelnik LM, Zeidner NS, Massung RF: Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol 2004, 42:3164-3168.
  • [21]Rymaszewska A: PCR for detection of tick-borne Anaplasma phagocytophilum pathogens: a review. Vet Med 2011, 56:529-536.
  • [22]Marmion BP, Storm PA, Ayres JG, Semendric L, Mathews L, Winslow W, Turra M, Harris RJ: Long-term persistence of Coxiella burnetii after acute primary Q fever. QJM 2005, 98:7-20.
  • [23]Subramanian G, Sekeyova Z, Raoult D, Mediannikov O: Multiple tick-associated bacteria in Ixodes ricinus from Slovakia. Ticks Tick Borne Dis 2012, 3:406-410.
  • [24]Postic D, Assous M, Grimont PAD, Baranton G: Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl(23S) intergenic spacer amplicons. Int J Syst Bacteriol 1994, 44:743-752.
  • [25]Derdakova M, Beati L, Pet’ko B, Stanko M, Fish D: Genetic variability within Borrelia burgdorferi sensu lato genospecies established by PCR-single-strand conformation polymorphism analysis of the rrfA-rrlB intergenic spacer in Ixodes ricinus ticks from the Czech Republic. Appl Environ Microbiol 2003, 69:509-516.
  • [26]Doolittle WF: Phylogenetic classification and the universal tree. Science 1999, 284:2124-2129.
  • [27]Small J, Call DR, Brockman FJ, Straub TM, Chandler DP: Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol 2001, 67:4708-4716.
  • [28]Blaskovic D, Barák I: Oligo-chip based detection of tick-borne bacteria. FEMS Microbiol Lett 2005, 243:473-478.
  • [29]Wilson WJ, Erler AM, Nasarabadi SL, Skowronski EW, Imbro PM: A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Mol Cell Probes 2005, 19:137-144.
  • [30]Deshpande A, Gans J, Graves SW, Green L, Taylor L, Kim HB, Kunde YA, Leonard PM, Li PE, Mark J, Song J, Vuyisich M, White PS: A rapid multiplex assay for nucleic acid-based diagnostics. J Microbiol Methods 2010, 80:155-163.
  • [31]Houck JA, Hojgaard A, Piesman J, Kuchta RD: Low-density microarrays for the detection of Borrelia burgdorferi s.s. (the Lyme disease spirochete) in nymphal Ixodes scapularis. Ticks Tick Borne Dis 2011, 21:27-36.
  • [32]Barbaro M, Bonfiglio A, Raffo L, Alessandrini A, Facci P, Barák I: Fully electronic DNA hybridization detection by a standard CMOS biochip. Sens Actuators B 2006, 118:41-46.
  • [33]Barbaro M, Bonfiglio A, Raffo L, Alessandrini A, Facci P, Barák I: A CMOS, fully integrated sensor for electronic detection of DNA hybridization. IEEE Electron Device Letters 2006, 27:595-597.
  • [34]Barlaan EA, Sugimori M, Furukawa S, Takeuchi K: Electronic microarray analysis of 16S rDNA amplicons for bacterial detection. J Biotechnol 2005, 115:11-21.
  • [35]Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM: The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 2003, 31:442-443.
  • [36]Integrated DNA Technologie’s OligoAnalyzer 3.1. http://eu.idtdna.com/analyzer/applications/oligoanalyzer/default.aspx webcite
  • [37]Basic Local Alignment Search Tool. http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome webcite
  • [38]Weisburg WG, Barns SM, Pelletier DA, Lane DJ: 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991, 173:697-703.
  • [39]Ottem KF, Nylund A, Isaksen TE, Karlsbakk E, Bergh Ø: Occurrence of Francisella piscicida in farmed and wild Atlantic cod, Gadus morhua L., in Norway. J Fish Dis 2008, 31:525-534.
  • [40]Lloyd SJ, LaPatra SE, Snekvik KR, Cain KD, Call DR: Quantitative PCR demonstrates a positive correlation between a Rickettsia-like organism and severity of strawberry disease lesions in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 2011, 34:701-709.
  • [41]DNA copy number calculation. http://www.thermoscientificbio.com/webtools/copynumber/ webcite
  • [42]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A laboratory manual. 2nd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
  • [43]Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, Heyman P, Medlock J, Heylen D, Kleve J, Sprong H: Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 2012, 5:74. BioMed Central Full Text
  • [44]Mitchell JL, Chatwell N, Christensen D, Diaper H, Minogue TD, Parsons TM, Walker B, Weller SA: Development of real-time PCR assays for the specific detection of Francisella tularensis ssp. tularensis, holarctica and mediaasiatica. Mol Cell Probes 2010, 24:72-76.
  • [45]GenScript Real-time PCR (TaqMan) Primer Design. https://www.genscript.com/ssl-bin/app/primer webcite
  • [46]Janse I, Bok JM, Hamidjaja RA, Hodemaekers HM, van Rotterdam BJ: Development and comparison of two assay formats for parallel detection of four biothreat pathogens by using suspension microarrays. PLoS One 2012, 7:e31958.
  • [47]Garaizar J, Rementeria A, Porwollik S: DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens? FEMS Immunol Med Microbiol 2006, 47:178-189.
  • [48]Monecke S, Jatzwauk L, Weber S, Slickers P, Ehricht R: DNA microarray-based genotyping of methicillin-resistant Staphylococcus aureus strains from Eastern Saxony. Clin Microbiol Infect 2008, 14:534-545.
  • [49]de Bruin A, de Groot A, de Heer L, Bok J, Wielinga PR, Hamans M, van Rotterdam BJ, Janse I: Detection of Coxiella burnetii in complex matrices by using multiplex quantitative PCR during a major Q fever outbreak in The Netherlands. Appl Environ Microbiol 2011, 77:6516-6523.
  • [50]Ribosomal RNA Operon Copy Number Database. http://rrndb.umms.med.umich.edu/search.php webcite
  • [51]Pang H, Winkler HH: Transcriptional analysis of the 16s rRNA gene in Rickettsia prowazekii. J Bacteriol 1996, 178:1750-1755.
  • [52]Afseth G, Mallavia LP: Copy number of the 16S rRNA gene in Coxiella burnetii. Eur J Epidemiol 1997, 13:729-731.
  • [53]Bernasconi MV, Casati S, Péter O, Piffaretti JC: Rhipicephalus ticks infected with Rickettsia and Coxiella in Southern Switzerland (Canton Ticino). Infect Genet Evol 2002, 2:111-120.
  • [54]Lee JH, Park HS, Jang WJ, Koh SE, Park TK, Kang SS, Kim BJ, Kook YH, Park KH, Lee SH: Identification of the Coxiella sp detected from Haemaphysalis longicornis ticks in Korea. Micro Immun 2004, 48:125-130.
  • [55]Mediannikov O, Ivanov L, Nishikawa M, Saito R, Sidelnikov YN, Zdanovskaya NI, Tarasevich IV, Suzuki H: Molecular evidence of Coxiella-like microorganism harbored by Haemaphysalis concinnae ticks in the Russian Far East. Ann N Y Acad Sci 2003, 990:226-228.
  • [56]Clay K, Klyachko O, Grindle N, Civitello D, Oleske D, Fuqua C: Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol Ecol 2008, 17:4371-4381.
  • [57]Mattila JT, Burkhardt NY, Hutcheson HJ, Munderloh UG, Kurtti TJ: Isolation of cell lines and a rickettsial endosymbiont from the soft tick Carios capensis (Acari: Argasidae: Ornithodorinae). J Med Entomol 2007, 44:1091-1101.
  • [58]Burgdorfer W, Hayes SF, Mavros AJ: Non-pathogenic rickettsiae in D. andersoni, a limiting factor for the distribution of Rickettsia rickettsii. In Rickettsiae and rickettsial diseases. Edited by Burgdorfer W, Anacker RL. New York: Academic Press, Inc; 1981:585-594.
  • [59]Noda H, Munderloh UG, Kurti TJ: Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 1997, 63:3926-3932.
  • [60]Scoles G: Phylogenetic analysis of the Francisella-like endosymbionts of Dermacentor ticks. J Med Entomol 2004, 41:277-286.
  • [61]Sun LV, Scoles GA, Fish D, O’Neill SL: Francisella-like endosymbionts of ticks. J Invertebr Pathol 2000, 76:301-303.
  • [62]Dale C, Moran NA: Molecular interactions between bacterial symbionts and their hosts. Cell 2006, 126:453-465.
  • [63]Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M: The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 2006, 314:267.
  • [64]Klyachko O, Stein BD, Grindle N, Clay K, Fuqua C: Localization and visualization of a Coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl Environ Microbiol 2007, 73:6584-6594.
  • [65]Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H: The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA 2005, 102:16919-16926.
  文献评价指标  
  下载次数:0次 浏览次数:4次