期刊论文详细信息
Orphanet Journal of Rare Diseases
Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study
Tatsuo Matsunaga2  Kenjiro Kosaki1  Kimitaka Kaga4  Jun Kudoh6  Noriko Morimoto5  Kazunori Namba2  Chiharu Torii1  Atsushi Shimizu3  Naohiro Suzuki2  Hideki Mutai2 
[1] Center for Medical Genetics Keio University School of Medicine, Tokyo, Japan;Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan;Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan;National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan;Department of Otorhinolaryngology, National Center for Child Health and Development, Tokyo, Japan;Laboratory of Gene Medicine, Keio University School of Medicine, Tokyo, Japan
关键词: Heterogeneity;    Deafness gene;    Target gene capture;    Hereditary hearing loss;   
Others  :  863437
DOI  :  10.1186/1750-1172-8-172
 received in 2013-07-18, accepted in 2013-10-05,  发布年份 2013
PDF
【 摘 要 】

Background

Genetic tests for hereditary hearing loss inform clinical management of patients and can provide the first step in the development of therapeutics. However, comprehensive genetic tests for deafness genes by Sanger sequencing is extremely expensive and time-consuming. Next-generation sequencing (NGS) technology is advantageous for genetic diagnosis of heterogeneous diseases that involve numerous causative genes.

Methods

Genomic DNA samples from 58 subjects with hearing loss from 15 unrelated Japanese families were subjected to NGS to identify the genetic causes of hearing loss. Subjects did not have pathogenic GJB2 mutations (the gene most often associated with inherited hearing loss), mitochondrial m.1555A>G or 3243A>G mutations, enlarged vestibular aqueduct, or auditory neuropathy. Clinical features of subjects were obtained from medical records. Genomic DNA was subjected to a custom-designed SureSelect Target Enrichment System to capture coding exons and proximal flanking intronic sequences of 84 genes responsible for nonsyndromic or syndromic hearing loss, and DNA was sequenced by Illumina GAIIx (paired-end read). The sequences were mapped and quality-checked using the programs BWA, Novoalign, Picard, and GATK, and analyzed by Avadis NGS.

Results

Candidate genes were identified in 7 of the 15 families. These genes were ACTG1, DFNA5, POU4F3, SLC26A5, SIX1, MYO7A, CDH23, PCDH15, and USH2A, suggesting that a variety of genes underlie early-childhood hearing loss in Japanese patients. Mutations in Usher syndrome-related genes were detected in three families, including one double heterozygous mutation of CDH23 and PCDH15.

Conclusion

Targeted NGS analysis revealed a diverse spectrum of rare deafness genes in Japanese subjects and underscores implications for efficient genetic testing.

【 授权许可】

   
2013 Mutai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725043524885.pdf 1530KB PDF download
99KB Image download
82KB Image download
81KB Image download
【 图 表 】

【 参考文献 】
  • [1]Morton CC, Nance WE: Newborn hearing screening–a silent revolution. N Engl J Med 2006, 354:2151-2164.
  • [2]Kral A, O’Donoghue GM: Profound deafness in childhood. N Engl J Med 2010, 363:1438-1450.
  • [3]Hereditary hearing loss homepage. http://hereditaryhearingloss.org webcite
  • [4]Hutchin T, Coy NN, Conlon H, Telford E, Bromelow K, Blaydon D, Taylor G, Coghill E, Brown S, Trembath R, Liu XZ, Bitner-Glindzica M, Mueller R: Assessment of the genetic causes of recessive childhood non-syndromic deafness in the UK - implications for genetic testing. Clin Genet 2005, 68:506-512.
  • [5]Matsunaga T, Kumanomido H, Shiroma M, Goto Y, Usami S: Audiological features and mitochondrial DNA sequence in a large family carrying mitochondrial A1555G mutation without use of aminoglycoside. Ann Otol Rhinol Laryngol 2005, 114:153-160.
  • [6]Shearer AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola J 2nd, Scherer S, Scheetz TE, Smith RJ: Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci USA 2010, 107:21104-21109.
  • [7]Shearer AE, Smith RJ: Genetics: advances in genetic testing for deafness. Curr Opin Pediatr 2012, 24:679-686.
  • [8]Brownstein Z, Bhonker Y, Avraham KB: High-throughput sequencing to decipher the genetic heterogeneity of deafness. Genome Biol 2012, 13:245. BioMed Central Full Text
  • [9]Delmaghani S, Aghaie A, Michalski N, Bonnet C, Weil D, Petit C: Defect in the gene encoding the EAR/EPTP domain-containing protein TSPEAR causes DFNB98 profound deafness. Hum Mol Genet 2012, 21:3835-3844.
  • [10]Schraders M, Haas SA, Weegerink NJ, Oostrik J, Hu H, Hoefsloot LH, Kannan S, Huygen PL, Pennings RJ, Admiraal RJ, Kalscheuer VM, Kunst HP, Kremer H: Next-generation sequencing identifies mutations of SMPX, which encodes the small muscle protein, X-linked, as a cause of progressive hearing impairment. Am J Hum Genet 2011, 88:628-634.
  • [11]Zheng J, Miller KK, Yang T, Hildebrand MS, Shearer AE, DeLuca AP, Scheetz TE, Drummond J, Scherer SE, Legan PK, Goodyear RJ, Richardson GP, Cheatham MA, Smith RJ, Dallos P: Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with alpha-tectorin and is mutated in autosomal dominant hearing loss (DFNA4). Proc Natl Acad Sci USA 2011, 108:4218-4223.
  • [12]Matsunaga T, Mutai H, Kunishima S, Namba K, Morimoto N, Shinjo Y, Arimoto Y, Kataoka Y, Shintani T, Morita N, Sugiuchi T, Masuda S, Nakano A, Taiji H, Kaga K: A prevalent founder mutation and genotype-phenotype correlations of OTOF in Japanese patients with auditory neuropathy. Clin Genet 2012, 82:425-432.
  • [13]dbSNP. http://www.ncbi.nlm.nih.gov/projects/SNP/ webcite
  • [14]1000GENOME. http://www.1000genomes.org/ webcite
  • [15]NHLBI exome variant server. http://evs.gs.washington.edu/EVS/ webcite
  • [16]UCSC conservation. http://genome.ucsc.edu/index.html webcite
  • [17]PolyPhen-2. http://genetics.bwh.harvard.edu/pph2/ webcite
  • [18]PROVEAN. http://provean.jcvi.org/index.php webcite
  • [19]NNSPLICE. http://www.fruitfly.org/seq_tools/splice.html webcite
  • [20]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [21]PDBsum. http://www.ebi.ac.uk/pdbsum/ webcite
  • [22]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22:195-201.
  • [23]Kiefer B, Riemann M, Buche C, Kassemeyer HH, Nick P: The host guides morphogenesis and stomatal targeting in the grapevine pathogen plasmopara viticola. Planta 2002, 215:387-393.
  • [24]Peitsch MC, Tschopp J: Comparative molecular modelling of the Fas-ligand and other members of the TNF family. Mol Immunol 1995, 32:761-772.
  • [25]Bowie JU, Luthy R, Eisenberg D: A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991, 253:164-170.
  • [26]Luthy R, Bowie JU, Eisenberg D: Assessment of protein models with three-dimensional profiles. Nature 1992, 356:83-85.
  • [27]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25:1605-1612.
  • [28]Morin M, Bryan KE, Mayo-Merino F, Goodyear R, Mencia A, Modamio-Hoybjor S, del Castillo I, Cabalka JM, Richardson G, Moreno F, Rubenstein PA, Moreno-Pelayo MA: In vivo and in vitro effects of two novel gamma-actin (ACTG1) mutations that cause DFNA20/26 hearing impairment. Hum Mol Genet 2009, 18:3075-3089.
  • [29]Shvetsov A, Musib R, Phillips M, Rubenstein PA, Reisler E: Locking the hydrophobic loop 262–274 to G-actin surface by a disulfide bridge prevents filament formation. Biochemistry 2002, 41:10787-10793.
  • [30]Collin RW, Chellappa R, Pauw RJ, Vriend G, Oostrik J, van Drunen W, Huygen PL, Admiraal R, Hoefsloot LH, Cremers FP, Xiang M, Cremers CW, Kremer H: Missense mutations in POU4F3 cause autosomal dominant hearing impairment DFNA15 and affect subcellular localization and DNA binding. Hum Mutat 2008, 29:545-554.
  • [31]Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, Morrow JE, Lee MK, Skvorak AB, Morton CC, Blumenfeld A, Frydman M, Friedman TB, King MC, Avraham KB: Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 1998, 279:1950-1954.
  • [32]Bischoff AM, Luijendijk MW, Huygen PL, van Duijnhoven G, De Leenheer EM, Oudesluijs GG, Van Laer L, Cremers FP, Cremers CW, Kremer H: A novel mutation identified in the DFNA5 gene in a Dutch family: a clinical and genetic evaluation. Audiol Neurootol 2004, 9:34-46.
  • [33]Van Laer L, Meyer NC, Malekpour M, Riazalhosseini Y, Moghannibashi M, Kahrizi K, Vandevelde A, Alasti F, Najmabadi H, Van Camp G, Smith RJ: A novel DFNA5 mutation does not cause hearing loss in an Iranian family. J Hum Genet 2007, 52:549-552.
  • [34]Liu XZ: Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet 2003, 12:1155-1162.
  • [35]Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, Kumar S, Neuhaus TJ, Kemper MJ, Raymond RM Jr, Brophy PD, Berkman J, Gattas M, Hyland V, Ruf EM, Schwartz C, Chang EH, Smith RJ, Stratakis CA, Weil D, Petit C, Hildebrandt F: SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci USA 2004, 101:8090-8095.
  • [36]Smith RJH, et al.: Branchiootorenal spectrum disorders. In Gene reviews Edited by Pagon RA, Adam MP, Bird TD. http://www.ncbi.nlm.nih.gov/books/NBK1380/ webcite
  • [37]Liu XZ, Walsh J, Tamagawa Y, Kitamura K, Nishizawa M, Steel KP, Brown SD: Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet 1997, 17:268-269.
  • [38]Liu XZ, Walsh J, Mburu P, Kendrick-Jones J, Cope MJ, Steel KP, Brown SD: Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet 1997, 16:188-190.
  • [39]Weil D, Kussel P, Blanchard S, Levy G, Levi-Acobas F, Drira M, Ayadi H, Petit C: The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 1997, 16:191-193.
  • [40]Yang Y, Baboolal TG, Siththanandan V, Chen M, Walker ML, Knight PJ, Peckham M, Sellers JR: A FERM domain autoregulates drosophila myosin 7a activity. Proc Natl Acad Sci USA 2009, 106:4189-4194.
  • [41]Adato A, Michel V, Kikkawa Y, Reiners J, Alagramam KN, Weil D, Yonekawa H, Wolfrum U, El-Amraoui A, Petit C: Interactions in the network of usher syndrome type 1 proteins. Hum Mol Genet 2005, 14:347-356.
  • [42]Wu L, Pan L, Wei Z, Zhang M: Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo. Science 2011, 331:757-760.
  • [43]Wagatsuma M, Kitoh R, Suzuki H, Fukuoka H, Takumi Y, Usami S: Distribution and frequencies of CDH23 mutations in Japanese patients with non-syndromic hearing loss. Clin Genet 2007, 72:339-344.
  • [44]Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CR, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Kaloustian VM, Li XC, Lalwani A, Riazuddin S, Bitner-Glindzicz M, Nance WE, Liu XZ, Wistow G, Smith RJ, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ: Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 2001, 68:26-37.
  • [45]Ahmed ZM, Riazuddin S, Ahmad J, Bernstein SL, Guo Y, Sabar MF, Sieving P, Riazuddin S, Griffith AJ, Friedman TB, Belyantseva IA, Wilcox ER: PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 2003, 12:3215-3223.
  • [46]Zheng QY, Yan D, Ouyang XM, Du LL, Yu H, Chang B, Johnson KR, Liu XZ: Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum Mol Genet 2005, 14:103-111.
  • [47]Eudy JD, Weston MD, Yao S, Hoover DM, Rehm HL, Ma-Edmonds M, Yan D, Ahmad I, Cheng JJ, Ayuso C, Cremers C, Davenport S, Moller C, Talmadge CB, Beisel KW, Tamayo M, Morton CC, Swaroop A, Kimberling WJ, Sumegi J: Mutation of a gene encoding a protein with extracellular matrix motifs in usher syndrome type IIa. Science 1998, 280:1753-1757.
  • [48]Brownstein Z, Friedman LM, Shahin H, Oron-Karni V, Kol N, Abu Rayyan A, Parzefall T, Lev D, Shalev S, Frydman M, Davidov B, Shohat M, Rahile M, Lieberman S, Levy-Lahad E, Lee MK, Shomron N, King MC, Walsh T, Kanaan M, Avraham KB: Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in middle eastern families. Genome Biol 2011, 12:R89. BioMed Central Full Text
  • [49]Sotomayor M, Weihofen WA, Gaudet R, Corey DP: Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 2012, 492:128-132.
  • [50]Yang T, Gurrola JG 2nd, Wu H, Chiu SM, Wangemann P, Snyder PM, Smith RJ: Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am J Hum Genet 2009, 84:651-657.
  • [51]Yang T, Vidarsson H, Rodrigo-Blomqvist S, Rosengren SS, Enerback S, Smith RJ: Transcriptional control of SLC26A4 is involved in pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J Hum Genet 2007, 80:1055-1063.
  • [52]Riazuddin S, Castelein CM, Ahmed ZM, Lalwani AK, Mastroianni MA, Naz S, Smith TN, Liburd NA, Friedman TB, Griffith AJ, Riazuddin S, Wilcox ER: Dominant modifier DFNM1 suppresses recessive deafness DFNB26. Nat Genet 2000, 26:431-434.
  • [53]Miyagawa M, Nishio SY, Usami S: Prevalence and clinical features of hearing loss patients with CDH23 mutations: a large cohort study. PLoS One 2012, 7:e40366.
  文献评价指标  
  下载次数:8次 浏览次数:2次