期刊论文详细信息
Radiation Oncology
Thorax irradiation triggers a local and systemic accumulation of immunosuppressive CD4+ FoxP3+ regulatory T cells
Verena Jendrossek3  Martin Stuschke2  Lutz Lüdemann2  Astrid M Westendorf1  Simone de Leve3  Muska Niazman3  Federica Cappuccini3  Florian Wirsdörfer3 
[1] Department of Infection Immunology, Institute of Microbiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany;Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany;Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Virchowstrasse 173, 45122, Essen, Germany
关键词: Fibrosis;    Pneumonitis;    T-lymphocytes;    Regulatory T cells;    Thorax irradiation;   
Others  :  805484
DOI  :  10.1186/1748-717X-9-98
 received in 2014-01-15, accepted in 2014-04-09,  发布年份 2014
PDF
【 摘 要 】

Background

Lymphocyte infiltration is a common feature of radiation-induced pneumonitis and fibrosis, but their contribution to the pathogenic processes is still unclear. Here, we addressed the impact of thorax irradiation on the T cell compartment with a focus on immunosuppressive regulatory T cells (Treg).

Methods

C57BL/6 wild type mice (WT) received anesthesia only (sham controls, 0 Gy) or were exposed to a single dose of whole thorax irradiation (15 Gy). Immune cells from lung tissue, spleen, and cervical lymph nodes were collected 10 to 84 days post-irradiation and phenotypically characterized by flow cytometry.

Results

Whole thorax irradiation provoked an increased influx of CD3+ T cells at 42 and 84 days post-irradiation. In contrast, local irradiation caused a sustained reduction in CD3+ T cells in peripheral lymphoid tissues. Interestingly, we observed a significant local and systemic increase in the fraction of CD4+ T cells expressing the transcription factor forkhead box P3 (FoxP3), the phenotypic marker for murine Treg, at day 21 post-irradiation. The accumulation of Treg was associated with increased levels of T cells expressing surface proteins characteristic for recruitment and immunosuppressive activity, e.g. CD103, CTLA-4 and CD73. Importantly, Treg isolated at this time point were able to suppress CD4+ effector T cells to a similar extent as Treg isolated from control mice.

Conclusions

The response of the adaptive immune system to whole thorax irradiation is characterized by local immunoactivation and systemic immunosuppression. The transient accumulation of immunosuppressive CD4+ FoxP3+ Treg may be required to protect the lung against excessive inflammation-induced tissue damage. Further investigations shall define the mechanisms underlying the accumulation of Treg and their role for the pathogenesis of radiation-induced lung disease.

【 授权许可】

   
2014 Wirsdörfer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708080459348.pdf 697KB PDF download
Figure 5. 43KB Image download
Figure 4. 40KB Image download
Figure 3. 34KB Image download
Figure 2. 38KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ghafoori P, Marks LB, Vujaskovic Z, Kelsey CR: Radiation-induced lung injury. Assessment, management, and prevention. Oncology (Williston Park) 2008, 22(1):37-47. discussion 52-33
  • [2]Tsoutsou PG, Koukourakis MI: Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 2006, 66(5):1281-1293.
  • [3]Kristensen CA, Nottrup TJ, Berthelsen AK, Kjaer-Kristoffersen F, Ravn J, Sorensen JB, Engelholm SA: Pulmonary toxicity following IMRT after extrapleural pneumonectomy for malignant pleural mesothelioma. Radiother Oncol J European Soc Therap Radiol Oncol 2009, 92(1):96-99.
  • [4]Graves PR, Siddiqui F, Anscher MS, Movsas B: Radiation pulmonary toxicity: from mechanisms to management. Semin Radiat Oncol 2010, 20(3):201-207.
  • [5]Travis EL, Vojnovic B, Davies EE, Hirst DG: A plethysmographic method for measuring function in locally irradiated mouse lung. British J Radiol 1979, 52(613):67-74.
  • [6]Eldh T, Heinzelmann F, Velalakan A, Budach W, Belka C, Jendrossek V: Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 2012, 188(3):274-281.
  • [7]Chiang CS, Liu WC, Jung SM, Chen FH, Wu CR, McBride WH, Lee CC, Hong JH: Compartmental responses after thoracic irradiation of mice: strain differences. Int J Radiat Oncol Biol Phys 2005, 62(3):862-871.
  • [8]O’Brien TJ, Letuve S, Haston CK: Radiation-induced strain differences in mouse alveolar inflammatory cell apoptosis. Can J Physiol Pharmacol 2005, 83(1):117-122.
  • [9]Trott KR, Herrmann T, Kasper M: Target cells in radiation pneumopathy. Int J Radiat Oncol Biol Phys 2004, 58(2):463-469.
  • [10]Rube CE, Uthe D, Wilfert F, Ludwig D, Yang K, Konig J, Palm J, Schuck A, Willich N, Remberger K, Rübe C: The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation. Int J Radiat Oncol Biol Phys 2005, 61(5):1482-1492.
  • [11]Todd NW, Luzina IG, Atamas SP: Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair 2012, 5(1):11. BioMed Central Full Text
  • [12]Gibson PG, Bryant DH, Morgan GW, Yeates M, Fernandez V, Penny R, Breit SN: Radiation-induced lung injury: a hypersensitivity pneumonitis? Ann Intern Med 1988, 109(4):288-291.
  • [13]Martin C, Romero S, Sanchez-Paya J, Massuti B, Arriero JM, Hernandez L: Bilateral lymphocytic alveolitis: a common reaction after unilateral thoracic irradiation. Eur Respir J 1999, 13(4):727-732.
  • [14]Roberts CM, Foulcher E, Zaunders JJ, Bryant DH, Freund J, Cairns D, Penny R, Morgan GW, Breit SN: Radiation pneumonitis: a possible lymphocyte-mediated hypersensitivity reaction. Ann Intern Med 1993, 118(9):696-700.
  • [15]Nakayama Y, Makino S, Fukuda Y, Min KY, Shimizu A, Ohsawa N: Activation of lavage lymphocytes in lung injuries caused by radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 1996, 34(2):459-467.
  • [16]Westermann W, Schobl R, Rieber EP, Frank KH: Th2 cells as effectors in postirradiation pulmonary damage preceding fibrosis in the rat. Int J Radiat Biol 1999, 75(5):629-638.
  • [17]Johnston CJ, Williams JP, Elder A, Hernady E, Finkelstein JN: Inflammatory cell recruitment following thoracic irradiation. Exp Lung Res 2004, 30(5):369-382.
  • [18]Cappuccini F, Eldh T, Bruder D, Gereke M, Jastrow H, Schulze-Osthoff K, Fischer U, Kohler D, Stuschke M, Jendrossek V: New insights into the molecular pathology of radiation-induced pneumopathy. Radiother Oncol J European Soc Therap Radiol Oncol 2011, 101(1):86-92.
  • [19]Sakaguchi S, Yamaguchi T, Nomura T, Ono M: Regulatory T cells and immune tolerance. Cell 2008, 133(5):775-787.
  • [20]Klein D, Demory A, Peyre F, Kroll J, Augustin HG, Helfrich W, Kzhyshkowska J, Schledzewski K, Arnold B, Goerdt S: Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology 2008, 47(3):1018-1031.
  • [21]Chen X, Oppenheim JJ: Resolving the identity myth: key markers of functional CD4 + FoxP3+ regulatory T cells. Int Immunopharmacol 2011, 11(10):1489-1496.
  • [22]Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 2003, 4(4):330-336.
  • [23]Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299(5609):1057-1061.
  • [24]Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC: Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007, 204(6):1257-1265.
  • [25]Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR: T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol 2006, 177(10):6780-6786.
  • [26]Allakhverdi Z, Fitzpatrick D, Boisvert A, Baba N, Bouguermouh S, Sarfati M, Delespesse G: Expression of CD103 identifies human regulatory T-cell subsets. J Allergy Clinical Immunol 2006, 118(6):1342-1349.
  • [27]Schaue D, Xie MW, Ratikan JA, McBride WH: Regulatory T cells in radiotherapeutic responses. Frontiers Oncol 2012, 2:90.
  • [28]Heinzelmann F, Jendrossek V, Lauber K, Nowak K, Eldh T, Boras R, Handrick R, Henkel M, Martin C, Uhlig S, Köhler D, Eltzschig HK, Wehrmann M, Budach W, Belka C: Irradiation-induced pneumonitis mediated by the CD95/CD95-ligand system. J Natl Cancer Inst 2006, 98(17):1248-1251.
  • [29]Ozsahin M, Crompton NE, Gourgou S, Kramar A, Li L, Shi Y, Sozzi WJ, Zouhair A, Mirimanoff RO, Azria D: CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clinical Cancer Res Off J Am Assoc Cancer Res 2005, 11(20):7426-7433.
  • [30]Kachikwu EL, Iwamoto KS, Liao YP, DeMarco JJ, Agazaryan N, Economou JS, McBride WH, Schaue D: Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys 2011, 81(4):1128-1135.
  • [31]Formenti SC, Demaria S: Systemic effects of local radiotherapy. Lancet Oncol 2009, 10(7):718-726.
  • [32]Qu Y, Jin S, Zhang A, Zhang B, Shi X, Wang J, Zhao Y: Gamma-ray resistance of regulatory CD4 + CD25 + Foxp3+ T cells in mice. Radiat Res 2010, 173(2):148-157.
  • [33]Balogh A, Persa E, Bogdandi EN, Benedek A, Hegyesi H, Safrany G, Lumniczky K: The effect of ionizing radiation on the homeostasis and functional integrity of murine splenic regulatory T cells. Inflammation Res Off J European Histamine Res Soc [et al] 2013, 62(2):201-212.
  • [34]Kusunoki Y, Yamaoka M, Kubo Y, Hayashi T, Kasagi F, Douple EB, Nakachi K: T-cell immunosenescence and inflammatory response in atomic bomb survivors. Radiat Res 2010, 174(6):870-876.
  • [35]Nakatsukasa H, Tsukimoto M, Tokunaga A, Kojima S: Repeated gamma irradiation attenuates collagen-induced arthritis via up-regulation of regulatory T cells but not by damaging lymphocytes directly. Radiat Res 2010, 174(3):313-324.
  • [36]Weng L, Williams RO, Vieira PL, Screaton G, Feldmann M, Dazzi F: The therapeutic activity of low-dose irradiation on experimental arthritis depends on the induction of endogenous regulatory T cell activity. Ann Rheum Dis 2010, 69(8):1519-1526.
  • [37]Martin M, Lefaix J, Delanian S: TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 2000, 47(2):277-290.
  • [38]Heiber JF, Geiger TL: Context and location dependence of adaptive Foxp3(+) regulatory T cell formation during immunopathological conditions. Cell Immunol 2012, 279(1):60-65.
  • [39]Curotto de Lafaille MA, Lafaille JJ: Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009, 30(5):626-635.
  • [40]Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM: Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003, 198(12):1875-1886.
  • [41]Tai X, Van Laethem F, Pobezinsky L, Guinter T, Sharrow SO, Adams A, Granger L, Kruhlak M, Lindsten T, Thompson CB, Feigenbaum L, Singer A: Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood 2012, 119(22):5155-5163.
  • [42]Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S: CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008, 322(5899):271-275.
  • [43]Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, Drake CG, Powell JD: A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 2008, 111(1):251-259.
  • [44]Hosek B, Bohacek J, Sikulova J, Pospisil M, Vacek A: Protection of early cellular damage in 1 Gy-irradiated mice by the elevation of extracellular adenosine. Radiat Environ Biophys 1992, 31(4):289-297.
  • [45]Pospisil M, Hofer M, Netikova J, Pipalova I, Vacek A, Bartonickova A, Volenec K: Elevation of extracellular adenosine induces radioprotective effects in mice. Radiat Res 1993, 134(3):323-330.
  • [46]Cao M, Cabrera R, Xu Y, Liu C, Nelson D: Gamma irradiation alters the phenotype and function of CD4 + CD25+ regulatory T cells. Cell Biol Int 2009, 33(5):565-571.
  • [47]Schaue D, Comin-Anduix B, Ribas A, Zhang L, Goodglick L, Sayre JW, Debucquoy A, Haustermans K, McBride WH: T-cell responses to survivin in cancer patients undergoing radiation therapy. Clinical cancer Res Off J Am Assoc Cancer Res 2008, 14(15):4883-4890.
  • [48]MacConmara MP, Tajima G, O′Leary F, Delisle AJ, McKenna AM, Stallwood CG, Mannick JA, Lederer JA: Regulatory T cells suppress antigen-driven CD4 T cell reactivity following injury. J Leukoc Biol 2011, 89(1):137-147.
  • [49]Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY: Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011, 34(4):566-578.
  • [50]Peterson RA: Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol 2012, 40(2):186-204.
  • [51]Wynn TA: Integrating mechanisms of pulmonary fibrosis. J Exp Med 2011, 208(7):1339-1350.
  • [52]Liu F, Liu J, Weng D, Chen Y, Song L, He Q, Chen J: CD4 + CD25 + Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice. PLoS One 2010, 5(11):e15404.
  文献评价指标  
  下载次数:8次 浏览次数:7次