期刊论文详细信息
Particle and Fibre Toxicology
Evaluation of traps and lures for mosquito vectors and xenomonitoring of Wuchereria bancrofti infection in a high prevalence Samoan Village
Hayley Joseph4  Wayne Melrose1  Patricia M Graves1  Scott A Ritchie1  Thomas R Burkot1  Hervé C Bossin2  Paulo Pemita3  Lameko Tesimale3  Ualesi Silva3  Take Naseri3  Catherine Plichart2  Limb K Hapairai2 
[1] Australian Institute of Tropical Health and Medicine, James Cook University, Cairns and Townsville, Australia;Institut Louis Malardé, Papeete, French Polynesia;Ministry of Health, Apia, Samoa;Current address: Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3053, VIC, Australia
关键词: Mosquito vector;    Mosquito trap;    BG-sentinel;    Samoa;    Xenomonitoring;    Elimination;    Aedes;    Transmission;    Filariasis;   
Others  :  1224718
DOI  :  10.1186/s13071-015-0886-2
 received in 2014-12-10, accepted in 2015-05-05,  发布年份 2015
【 摘 要 】

Background

Elimination of lymphatic filariasis (LF) in Samoa continues to be challenging despite multiple annual mass drug campaigns aimed at stopping transmission by reducing the prevalence and density of microfilaraemia. The persistence of transmission may be partly related to the highly efficient Aedes vectors. The assessment of pathogen transmission by mosquito vectors and of vector control relies on the ability to capture mosquitoes efficiently. The aims of this study are to compare trapping methods to capture LF-infected mosquitoes and determine the role in transmission of the species of Aedes mosquitoes in the area.

Methods

Fasitoo-Tai village was the chosen site because of persistent transmission despite annual mass drug administration. Sampling methods included BioGents Sentinel (BGS) trap, human-baited collections (HBC) and the Centers for Disease Control (CDC) trap. BGS and CDC traps were baited with BG-lure, CO2, and/or octenol. Individual trap locations were geo-located and efficiency of sampling methods was evaluated using a randomized Latin-square design in two locations. Number of mosquitoes collected (male and female), as well as species for each trapping method were determined. Additionally, Ae. polynesiensis and Ae. (Finlaya) spp. females were pooled by trap method and analysed for filarial DNA. Infection prevalence was estimated using the PoolScreen software.

Results

The BGS trap with any type of bait collected more mosquitoes compared to both the CDC trap and the HBC. The BGS trap baited with BG-lure collected more mosquitoes than with CO2 and octenol. There were no significant differences between trapping methods in terms of proportions of infected females collected. The prevalence of filarial infection in Ae. polynesiensis and Ae. (Finlaya) spp. was estimated at 4.7 % and 0.67 % respectively.

Conclusions

This study supports the use of the BGS trap for research on and surveillance of the mosquito vectors of LF in Samoa. The BGS trap is a suitable and safer alternative to HBC for sampling Ae. polynesiensis and Ae. (Finlaya) spp., which continue to be the predominant vectors of LF. Of concern was the high prevalence of LF in mosquitoes despite a recent mass drug administration programme. This highlights the urgency for updated policies concerning filariasis elimination in Samoa.

【 授权许可】

   
2015 Hapairai et al.; licensee BioMed Central.

附件列表
Files Size Format View
Fig. 1. 53KB Image download
Fig. 1. 53KB Image download
【 图 表 】

Fig. 1.

Fig. 1.

【 参考文献 】
  • [1]Ichimori K, King JD, Engels D, Yajima A, Mikhailov A, Lammie P et al.. Global Programme to Eliminate Lymphatic Filariasis: The Processes Underlying Programme Success. PLoS Negl Trop Dis. 2014; 8(12): Article ID e3328
  • [2]WPRO W. The PacELF Way: towards the elimination of lymphatic filariasis from the Pacific, 1999–2005. Manila, Philippines; 2006.
  • [3]Kimura E, Penaia L, Spears G. Epidemiology of subperiodic bancroftian filariasis in Samoa 8 years after control by mass treatment with diethylcarbamazine. Bull World Health Organ. 1985; 63(5):869-80.
  • [4]Ichimori K. Entomology of the filariasis control programme in Samoa. Aedes polynesiensis and Ae samoanus. Med Entomol Zool. 2001; 52(1):11-21.
  • [5]Ichimori K, Tupuimalagi-Toelupe P, Toeaso Iosia V, Graves P. Wuchereria bancrofti filariasis control in Samoa before PacELF (Pacific Programme to Eliminate Lymphatic Filariasis). Trop Med Health. 2007; 35(3):261-9.
  • [6]Ottesen EA, Duke BO, Karam M, Behbehani K. Strategies and tools for the control/elimination of lymphatic filariasis. Bull World Health Organ. 1997; 75(6):491-503.
  • [7]Neglected Tropical diseases. World Health Organisation, Hanoi, Viet Nam; 2012.
  • [8]Ichimori K, Crump A. Pacific collaboration to eliminate lymphatic filariasis. Trends Parasitol. 2005; 21(10):441-4.
  • [9]Huppatz C, Capuano C, Palmer K, Kelly PM, Durrheim DN. Lessons from the Pacific programme to Eliminate Lymphatic Filariasis: a case study of 5 countries. BMC Infect Dis. 2009; 9(1):92. BioMed Central Full Text
  • [10]Joseph H, Maiava F, Naseri T, Taleo F, Ake M, Capuano C, Melrose W. Application of the Filariasis CELISA anti-filarial IgG4 antibody assay in surveillance in lymphatic filariasis elimination programmes in the South Pacific. J Trop Med. 2011; doi:10.1155/2011/492023.
  • [11]Joseph H, Maiava F, Naseri T, Silva U, Lammie P, Melrose W. Epidemiological assessment of continuing transmission of lymphatic filariasis in Samoa. Ann Trop Med Parasitol. 2011; 105(8):567-78.
  • [12]Joseph H, Moloney J, Maiava F, McClintock S, Lammie P, Melrose W. First evidence of spatial clustering of lymphatic filariasis in an Aedes polynesiensis endemic area. Acta Trop. 2011; 120:S39-47.
  • [13]Esterre P, Plichart C, Séchan Y, Nguyen NL. The impact of 34 years of massive DEC chemotherapy on Wuchereria bancrofti infection and transmission: The Maupiti cohort. Trop Med Int Health. 2001; 6(3):190-5.
  • [14]Joseph H, Clough A, Peteru A, Crawley S, Pulu T, Maiava F et al.. Exploratory study investigating factors influencing Mass Drug Administration (MDA) compliance for lymphatic filariasis in Samoa. Samoa Med J. 2010; 2:12-25.
  • [15]Burkot TR, Durrheim DN, Melrose WD, Speare R, Ichimori K. The argument for integrating vector control with multiple drug administration campaigns to ensure elimination of lymphatic filariasis. Filaria J. 2006; 5(1):10. BioMed Central Full Text
  • [16]Ramalingam S, Belkin JN. Vectors of Sub-periodic Bancroftian Filariasis in the Samoa-Tonga Area. Nature. 1964; 201:105-6.
  • [17]Snow LC, Bockarie MJ, Michael E. Transmission dynamics of lymphatic filariasis: vector specific density dependence in the development of Wuchereria bancrofti infective larvae in mosquitoes. Med Vet Entomol. 2006; 20(3):261-72.
  • [18]Pichon G. Limitation and facilitation in the vectors and other aspects of the dynamics of filarial transmission: the need for vector control against Anopheles-transmitted filariasis. Ann Trop Med Parasitol. 2002; 96 Supplement 2:S143-52.
  • [19]Russell RC. The relative attractiveness of carbon dioxide and octenol in CDC- and EVS-type light traps for sampling the mosquitoes Aedes aegypti (L.), Aedes polynesiensis Marks, and Culex quinquefasciatus Say in Moorea French Polynesia. J Vector Ecol. 2004; 29(2):309-14.
  • [20]Samarawickrema WA, Sone F, Cummings RF. Seasonal abundance, diel biting activity and parity of Aedes polynesiensis marks and A. samoanus (Grünberg)(Diptera: Culicidae) in Samoa. Bull Entomol Res. 1987; 77(2):191-200.
  • [21]Samarawickrema WA, Kimura E, Spears GFS, Penaia L, Sone F, Paulson GS et al.. Distribution of vectors, transmission indices and microfilaria rates of subperiodic Wuchereria bancrofti in relation to village ecotypes in Samoa. Trans R Soc Trop Med Hyg. 1987; 81(1):129-35.
  • [22]Samarawickrema W, Sone F, Paulson G, Kimura E, Uchida K, Cummings R. Observations on Culex quinquefasciatus Say in relation to transmission of filariasis due to subperiodic Wuchereria bancrofti in Samoa. Ann Trop Med Parasitol. 1992;86:517–7.
  • [23]Suzuki T, Sone F. The bionomics of filariasis vectors in Western Samoa. Jpn J Sanitation Zool. 1974; 25(3):251-7.
  • [24]Schmaedick MA, Ball TS, Burkot TR, Gurr NE. Evaluation of three traps for sampling Aedes polynesiensis and other mosquito species in American Samoa. J Am Mosq Control Assoc. 2008; 24(2):319-22.
  • [25]Chambers EW, McClintock SK, Avery MF, King JD, Bradley MH, Schmaedick MA et al.. Xenomonitoring of Wuchereria bancrofti and Dirofilaria immitis infections in mosquitoes from American Samoa: trapping considerations and a comparison of polymerase chain reaction assays with dissection. Am J Trop Med Hyg. 2009; 80(5):774-81.
  • [26]Schmaedick MA, Koppel AL, Pilotte N, Torres M, Williams SA, Dobson SL et al.. Molecular xenomonitoring using mosquitoes to map lymphatic filariasis after mass drug administration in American Samoa. PLoS Negl Trop Dis. 2014; 8(8): Article ID e3087
  • [27]Rao RU, Atkinson LJ, Ramzy RMR, Helmy H, Farid HA, Bockarie MJ et al.. A real-time PCR-based assay for detection of Wuchereria bancrofti DNA in blood and mosquitoes. Am J Trop Med Hyg. 2006; 74(5):826-32.
  • [28]Hapairai LK, Cheong Sang MA, Bossin HC. Comparison of the Centers for Disease Control and Prevention-Backpack and Insectazooka Aspirators for Sampling Aedes polynesiensis in French Polynesia. J Am Mosq Control Assoc. 2014; 30(2):126-9.
  • [29]Smallegange R, Schmied W, van Roey K, Verhulst N, Spitzen J, Mukabana W et al.. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J. 2010; 9(1):292. BioMed Central Full Text
  • [30]Hapairai LK, Joseph H, Sang C, Michel A, Melrose W, Ritchie SA et al.. Field Evaluation of Selected Traps and Lures for Monitoring the Filarial and Arbovirus Vector, Aedes polynesiensis (Diptera: Culicidae), in French Polynesia. J Med Entomol. 2013; 50(4):731-9.
  • [31]Belkin JN. The mosquitoes of the South Pacific (Diptera, Culicidae). University of California Press, Berkeley; 1962.
  • [32]Katholi CR, Toé L, Merriweather A, Unnasch TR. Determining the prevalence of Onchocerca volvulus infection in vector populations by polymerase chain reaction screening of pools of black flies. J Infect Dis. 1995; 172(5):1414-7.
  • [33]Samarawickrema W, Sone F, Cummings R. Natural infections of Wuchereria bancrofti in Aedes (Stegomyia) polynesiensis and Aedes (Finlaya) samoanus in Samoa. Trans R Soc Trop Med Hyg. 1987; 81(1):124-8.
  • [34]Ritchie SA, Cortis G, Townsend M, Shroyer D, Zborowski P, Hall-Mendelin S et al.. A simple non-powered passive trap for the collection of mosquitoes for arbovirus surveillance. J Med Entomol. 2013; 50:185-94.
  • [35]Hapairai LK, Sang MAC, Sinkins SP, Bossin HC. Population Studies of the Filarial Vector Aedes polynesiensis (Diptera: Culicidae) in Two Island Settings of French Polynesia. J Med Entomol. 2013; 50(5):965-76.
  • [36]Suzuki T. Filarial infection in vector mosquitoes after mass drug administration in Western Samoa. Trop Med. 1975; 16(3):147-56.
  • [37]Fischer P, Erickson SM, Fischer K, Fuchs JF, Rao RU, Christensen BM et al.. Persistence of Brugia malayi DNA in vector and non-vector mosquitoes: implications for xenomonitoring and transmission monitoring of lymphatic filariasis. Am J Trop Med Hyg. 2007; 76(3):502-7.
  • [38]Laney SJ, Buttaro CJ, Visconti S, Pilotte N, Ramzy RM, Weil GJ et al.. A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes. PLoS Negl Trop Dis. 2008; 2(6): Article ID e251
  • [39]Laney SJ, Ramzy RM, Helmy HH, Farid HA, Ashour AA, Weil GJ et al.. Detection of Wuchereria bancrofti L3 larvae in mosquitoes: a reverse transcriptase PCR assay evaluating infection and infectivity. PLoS Negl Trop Dis. 2010; 4(2): Article ID e602
  文献评价指标  
  下载次数:11次 浏览次数:15次