期刊论文详细信息
Radiation Oncology
Is the in vivo dosimetry with the OneDosePlusTM system able to detect intra-fraction motion? A retrospective analysis of in vivo data from breast and prostate patients
Riccardo Santoni2  Luana Di Murro2  Rosaria Barbarino2  Grazia Tortorelli2  Barbara Tolu2  Elisabetta Ponti2  Mauro Rebuzzi2  Alessia Lo Bosco1  Marco D’Andrea3  Maria Daniela Falco2 
[1] Department of Physics, Tor Vergata University, V. della Ricerca Scientifica 1, 00133, Rome, Italy;Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiotherapy, Tor Vergata University General Hospital, V.le Oxford 81, 00133, Rome, Italy;Laboratory of Medical Physics and Expert Systems, National Cancer Institute Regina Elena, V. E. Chianesi 53, 00144, Rome, Italy
关键词: Intra-fraction motion error;    In vivo dosimetry;    MOSFET detector;    OneDosePlusTM system;   
Others  :  1160819
DOI  :  10.1186/1748-717X-7-97
 received in 2012-03-08, accepted in 2012-06-05,  发布年份 2012
PDF
【 摘 要 】

Background

The OneDosePlusTM system, based on MOSFET solid-state radiation detectors and a handheld dosimetry reader, has been used to evaluate intra-fraction movements of patients with breast and prostate cancer.

Methods

An Action Threshold (AT), defined as the maximum acceptable discrepancy between measured dose and dose calculated with the Treatment Planning System (TPS) (for each field) has been determined from phantom data. To investigate the sensitivity of the system to direction of the patient movements, fixed displacements have been simulated in phantom. The AT has been used as an indicator to establish if patients move during a treatment session, after having verified the set-up with 2D and/or 3D images. Phantom tests have been performed matching different linear accelerators and two TPSs (TPS1 and TPS2).

Results

The ATs have been found to be very similar (5.0% for TPS1 and 4.5% for TPS2). From statistical data analysis, the system has been found not sensitive enough to reveal displacements smaller than 1 cm (within two standard deviations). The ATs applied to in vivo treatments showed that among the twenty five patients treated for breast cancer, only four of them moved during each measurement session. Splitting data into medial and lateral field, two patients have been found to move during all these sessions; the others, instead, moved only in the second part of the treatment. Patients with prostate cancer have behaved better than patients with breast cancer. Only two out of twenty five moved in each measurement session.

Conclusions

The method described in the paper, easily implemented in the clinical practice, combines all the advantages of in vivo procedures using the OneDosePlusTM system with the possibility of detecting intra-fraction patient movements.

【 授权许可】

   
2012 Falco et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150411081112123.pdf 1226KB PDF download
Figure 8. 35KB Image download
Figure 7. 37KB Image download
Figure 6. 41KB Image download
Figure 5. 45KB Image download
Figure 4. 44KB Image download
Figure 3. 37KB Image download
Figure 2. 29KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Protection of the patient in radiation therapy. ICRP publication 44. International Commission on Radiological Protection (ICRP) Ann ICRP 1985, 15:2.
  • [2]Belleti S, Dutreix A, Garavaglia G, Gfirtner H, Haywood HJ, Jessen KA, Lamm I-L, Mijnheer B, Noël A, Nüsslin F, Rosenow U, Schneider P, Seelentag W, Sheriff S, Svensson H, Thwaites H: Quality assurance in radiotherapy: the importance of medical physics staffing levels. Recommendations from an ESTRO/EFOM joint task group. Radiother Oncol 1996, 41:89-94.
  • [3]Yorke E, Alecu R, Fontenla D, Ding L, Kalend A, Kaurin D, et al.: Diode in vivo dosimetry for patients receiving external beam radiotherapy: recommendations of the AAPM radiation therapy committee. Task group 62. Medical Physics Publishing; 2005.
  • [4]Garavaglia G, Johansonn KA, Leunens G, Mijnheer BJ: The role of in-vivo dosimetry. Radiother Oncol 1993, 29:281-282.
  • [5]Huyskens DP, Bogaerts R, Verstraete J, Leaf M, Nystrom H, Fiorino C, Broggi S, Jornet N, Ribas M, Thwaites DI: Practical guidelines for the implementation of in vivo dosimetry with diode in external radiotherapy with photon beams (entrance dose). 2001.
  • [6]Loncol T, Greffe JL, Vynckier S, Scalliet P: Entrance and exit dose measurements with semiconductors and thermoluminescent dosemeters: a comparison of methods and in vivo results. Radiother Oncol 1996, 41:179-187.
  • [7]Su FC, Shi C, Papanikolaou N: Clinical Application of GAFCHROMIC® EBT film for in vivo dose measurements of total body irradiation radiotherapy. App Radiat Isot 2008, 66:389-394.
  • [8]Mijnheer B: The state of the art of in vivo dosimetry. Rad Pro Dos 2008, 131(1):117-122.
  • [9]Hughes RC, Huffman D, Snelling JV, Zipperian TE, Ricco AJ, Kelsey CA: Miniature radiation dosimeter for in vivo radiation measurements. Int J Radiat Oncol Biol Phys 1988, 14:963-967.
  • [10]Soubra M, Cygler J, Mackay G: Evaluation of a dual bias metal oxide-silicon semiconductor field effect transistor as radioation dosimeter. Med Phys 1994, 21:576-572.
  • [11]Ramani R, Russel S, O’Brien P: Clinical dosimetry using MOSFETs. Int J Radiat Oncol Biol Phys 1997, 37:959-964.
  • [12]Butson MJ, Rozenfeld A, Mathur JN, Carolan M, Wong TP, Metcalfe PE: A new radiotherapy surface dose detector: the MOSFET. Med Phys 1996, 23:655-658.
  • [13]Scalchi P, Francescon P, Rajguru P: Characterization of a new MOSFET detector configuration for in vivo skin dosimetry. Med Phys 2005, 32:1571-1758.
  • [14]Technologies S: “One Dose User’s Manual”, Pre-production draft version, rev P01. Morrisville: Sicel Technologies Inc; 2003.
  • [15]Halvorsen PH: Dosimetric evaluation of a new design MOSFET in vivo dosimeter. Med Phys 2005, 32(1):110-117.
  • [16]Beddar AS, Salehpour M, Briere TM, Hamidian H, Gillin MT: Preliminary evaluation of implantable MOSFET radiation dosimeters. Phys Med Biol 2005, 50:141-149.
  • [17]Best S, Ralston A, Suchowerska N: Clinical application of the one dose patient dosimetry system for total body irradiation. Phys Med Biol 2005, 50:5909-5919.
  • [18]Briere TM, Lii J, Prado K, Gillin MT, Beddar AS: Single-use MOSFET radiation dosimeters for the quality assurance of megavoltage photon beams. Phys Med Biol 2006, 51:1139-1144.
  • [19]Kinhikar RA, Sharma PK, Tambe CM, Mahantshetty UM, Sarin R, Deshpande DD, Shrivastava SK: Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast. Phys Med Biol 2006, 51:263-268.
  • [20]Kinhikar RA, Sharma PK, Tambe CM, Deshpande D: Dosimetric evaluation of a new OneDose MOSFET for Ir-192 energy. Phys Med Biol 2006, 51:1261-1268.
  • [21]Briere TM, Tailor R, Tolani N, Prado K, Lane R, Woo S, Ha C, Gillin MT, Beddar AS: Patient dosimetry for total body irradiation using single-use MOSFET detectors. JACMP 2008, 9(4):200-205.
  • [22]Cheng CW, Wolansky M, Das IJ, Zhao Q, Fanelli L, Gautam A, Pack D: Dosimetric characteristics of a single use MOSFET dosimeter for in vivo dosimetry in proton therapy. Med Phys 2010, 37:4266-4273.
  • [23]AAPM Task Group 21: “A protocol for the determination of absorbed dose from high-energy photon and electron therapy”. Med Phys 1983, 10:741-771.
  • [24]Morton JP, Bhat M, Williams T, Kovendy A: Clinical results of entrance dose in vivo dosimetry for high energy photons in external beam radiotherapy using MOSFETs. Australas Phys Eng Sci Med 2007, 30(4):252-259.
  • [25]Remeijer P, Geerlof E, Ploeger L, Gilhuijs K, van Herk M, Lebesque JV: 3-D portal image analysis in clinical practice: an evaluation of 2D and 3D analysis techniques as applied to 30 prostate cancer patients. Int J Radiat Oncol Biol Phys 2000, 46:1281-1290.
  • [26]Falco MD, Fontanarosa D, Miceli R, Carosi A, Santoni R, D’Andrea M: Preliminary studies for a CBCT imaging protocoll for offline organ motion analysis: registration software validation and CTDI measurements. Med Dos 2011, 36(1):91-101.
  • [27]Hurkmans CW, Remeijer P, Lebesque JV, Mijnheer BJ: Set-up verification using portal imaging; review of current clinical practise. Radiother Oncol 2001, 58:105-120.
  • [28]Kini VR, Vedam SS, Keall P, Mohan AR: A dynamic non-invasive technique for predicting organ motion in respiratory-gated radiotherapy of the chest. Int J Radiat Oncol Biol Phys 2001, 51:25-26.
  • [29]Soete G, Verellen D, Michielsen D, Vinh-Hung V, Van de Steene J, Van den Berge D, De Roover P, Keuppens F, Storme G: Clinical use of stereoscopic X-Ray positioning of patients treated with conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2004, 54(3):948-952.
  • [30]Frazier RC, Vicini FA, Sharpe MB, Yan D, Fayad J, Baglan KL, Kestin LL, Remouchamps VM, Martinez AA, Wong JW: Impact of breathing motion on whole breast radiotherapy: a dosimetric analysis using active breathing control. Int J Radiat Oncol Biol Phys 2004, 58(4):1041-1047.
  • [31]Hoisak JD, Sixel KE, Tiron R, Cheung PCF, Pignol J-P: Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys 2004, 60:298-1306.
  • [32]Senthilkumar S, Ramakrishnan V: In-house auto cutoff sensor device for radiotherapy machine to monitor patient movements. JACMP 2008, 9(3):82-89.
  • [33]Cherpak AJ, Cygler JE, Andrusyk S, Pantarotto J, MacRae R, Perry G: Clinical use of a novel in vivo 4 D monitoring system for simultaneous patient motion and dose measurements. Radiother Oncol 2012, 102:290-296.
  • [34]Juhler Nøttrup T, Korreman SS, Pedersen AN, Aarup LR, Nyström H, Olsen M, Specht L: Intra- and interfraction breathing variations during curative radiotherapy for lung cancer. Radiother Oncol 2007, 84:40-48.
  • [35]Gierga DP, Brewer J, Sharp GC, Betke M, Willett CG, Chen GT: The correlation between internal and external markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Phys 2005, 61:1551-1558.
  • [36]Hoisak JDP, Sixela KE, Tironac R, Cheung PCF, Pignol J-P: Prediction of lung tumour position based on spirometry and on abdominal displacement: accuracy and reproducibility. Radiother Oncol 2006, 78:339-346.
  • [37]Adamson J, Wu Q: Prostate intrafraction motion evaluation using kV fluoroscopy during treatment delivery: A feasibility and accuracy study. Med Phys 2008, 35(5):1793-1806.
  • [38]Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM: Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 2006, 65:528-534.
  • [39]Poggi MM, Gant DA, Sewchand W, Warlick WB: Marker seed migration in prostate localization. Int J Radiat Oncol Biol Phys 2003, 56(5):1248-1251.
  文献评价指标  
  下载次数:68次 浏览次数:18次