期刊论文详细信息
Particle and Fibre Toxicology
Reclassification of Theileria annae as Babesia vulpes sp. nov.
Leonhard Schnittger2  Luís Cardoso1  Monica Florin-Christensen2  Gad Baneth3 
[1] Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal;CONICET, Ciudad Autónoma de Buenos Aires, Argentina;Koret School of Veterinary Medicine, Hebrew University, Rehovot 76100, Israel
关键词: dog;    red fox;    Babesia Spanish dog isolate;    Babesia annae;    Babesia (Theileria) annae;    Theileria annae;    Babesia microti-like;    Babesia cf. microti;    Babesia microti;    Babesia vulpes;   
Others  :  1172304
DOI  :  10.1186/s13071-015-0830-5
 received in 2015-01-29, accepted in 2015-03-26,  发布年份 2015
PDF
【 摘 要 】

Background

Theileria annae is a tick-transmitted small piroplasmid that infects dogs and foxes in North America and Europe. Due to disagreement on its placement in the Theileria or Babesia genera, several synonyms have been used for this parasite, including Babesia Spanish dog isolate, Babesia microti-like, Babesia (Theileria) annae, and Babesia cf. microti. Infections by this parasite cause anemia, thrombocytopenia, and azotemia in dogs but are mostly subclinical in red foxes (Vulpes vulpes). Furthermore, high infection rates have been detected among red fox populations in distant regions strongly suggesting that these canines act as the parasite’s natural host. This study aims to reassess and harmonize the phylogenetic placement and binomen of T. annae within the order Piroplasmida.

Methods

Four molecular phylogenetic trees were constructed using a maximum likelihood algorithm based on DNA alignments of: (i) near-complete 18S rRNA gene sequences (n = 76 and n = 93), (ii) near-complete and incomplete 18S rRNA gene sequences (n = 92), and (iii) tubulin-beta gene sequences (n = 32) from B. microti and B. microti-related parasites including those detected in dogs and foxes.

Results

All phylogenetic trees demonstrate that T. annae and its synonyms are not Theileria parasites but are most closely related with B. microti. The phylogenetic tree based on the 18S rRNA gene forms two separate branches with high bootstrap value, of which one branch corresponds to Babesia species infecting rodents, humans, and macaques, while the other corresponds to species exclusively infecting carnivores. Within the carnivore group, T. annae and its synonyms from distant regions segregate into a single clade with a highly significant bootstrap value corroborating their separate species identity.

Conclusion

Phylogenetic analysis clearly shows that T. annae and its synonyms do not pertain to Theileria and can be clearly defined as a separate species. Based on the facts that T. annae and its synonyms have not been shown to have a leukocyte stage, as expected in Theileria, do not infect humans and rodents as B. microti, and cluster phylogenetically as a separate species, this study proposes to name this parasite Babesia vulpes sp. nov., after its natural host, the red fox V. vulpes.

【 授权许可】

   
2015 Baneth et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150421090005137.pdf 1763KB PDF download
Figure 2. 45KB Image download
Figure 1. 102KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Solano-Gallego L, Baneth G. Babesiosis in dogs and cats – expanding parasitological and clinical spectra. Vet Parasitol. 2011; 181:48-60.
  • [2]Zahler M, Rinder H, Schein E, Gothe R. Detection of a new pathogenic Babesia microti-like species in dogs. Vet Parasitol. 2000; 89:241-8.
  • [3]Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison D. Babesia: A world emerging. Infect Genet Evol. 2012; 12:1788-809.
  • [4]Mehlhorn H, Schein E. The piroplasms: life cycle and sexual stages. Adv Parasitol. 1984; 23:37-103.
  • [5]Camacho AT, Pallas E, Gestal JJ, Guitián FJ, Olmeda AS, Goethert HK et al.. Infection of dogs in north-west Spain with a Babesia microti-like agent. Vet Rec. 2001; 149:552-5.
  • [6]Tabar MD, Francino O, Altet L, Sánchez A, Ferrer L, Roura X. PCR survey of vector borne pathogens in dogs living in and around Barcelona, an area endemic for leishmaniasis. Vet Rec. 2009; 164:112-6.
  • [7]Beck R, Vojta L, Mrljak V, Marinculić A, Beck A, Zivicnjak T et al.. Diversity of Babesia and Theileria species in symptomatic and asymptomatic dogs in Croatia. Int J Parasitol. 2009; 9:843-8.
  • [8]Simões PB, Cardoso L, Araújo M, Yisaschar-Mekuzas Y, Baneth G. Babesiosis due to the canine Babesia microti-like small piroplasm in dogs-first report from Portugal and possible vertical transmission. Parasit Vectors. 2011; 4:50. BioMed Central Full Text
  • [9]Falkenö U, Tasker S, Osterman-Lind E, Tvedten HW. Theileria annae in a young Swedish dog. Acta Vet Scand. 2013; 55:50. BioMed Central Full Text
  • [10]Yeagley TJ, Reichard MV, Hempstead JE, Allen KE, Parsons LM, White MA et al.. Detection of Babesia gibsoni and the canine small Babesia ‘Spanish isolate’ in blood samples obtained from dogs confiscated from dog fighting operations. J Am Vet Med Assoc. 2009; 235:535-9.
  • [11]Criado-Fornelio A, Martinez-Marcos A, Buling-Saraña A, Barba-Carretero JC. Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. Part I. Epizootiological aspects. Vet Parasitol. 2003; 113:189-201.
  • [12]Tampieri MP, Galuppi R, Bonoli C, Cancrini G, Moretti A, Pietrobelli M. Wild ungulates as Babesia hosts in northern and central Italy. Vector Borne Zoonotic Dis. 2008; 8:667-74.
  • [13]Dezdek D, Vojta L, Curković S, Lipej Z, Mihaljević Z, Cvetnić Z et al.. Molecular detection of Theileria annae and Hepatozoon canis in foxes (Vulpes vulpes) in Croatia. Vet Parasitol. 2010; 172:333-6.
  • [14]Clancey N, Horney B, Burton S, Birkenheuer A, McBurney S, Tefft K. Babesia (Theileria) annae in a red fox (Vulpes vulpes) from Prince Edward Island, Canada. J Wildl Dis. 2010; 46:615-21.
  • [15]Birkenheuer AJ, Horney B, Bailey M, Scott M, Sherbert B, Catto V et al.. Babesia microti-like infections are prevalent in North American foxes. Vet Parasitol. 2010; 172:179-82.
  • [16]Cardoso L, Cortes HC, Reis A, Rodrigues P, Simões M, Lopes AP et al.. Prevalence of Babesia microti-like infection in red foxes (Vulpes vulpes) from Portugal. Vet Parasitol. 2013; 196:90-5.
  • [17]Najm NA, Meyer-Kayser E, Hoffmann L, Herb I, Fensterer V, Pfister K et al.. A molecular survey of Babesia spp. and Theileria spp. in red foxes (Vulpes vulpes) and their ticks from Thuringia, Germany. Ticks Tick Borne Dis. 2014; 5:386-91.
  • [18]Duscher G, Fuehrer HP, Kübber-Heiss A. Fox on the run – molecular surveillance of fox blood and tissue for the occurrence of tick-borne pathogens in Austria. Parasit Vectors. 2014; 7:521.
  • [19]Zanet S, Trisciuoglio A, Bottero E, de Mera IG, Gortazar C, Carpignano MG et al.. Piroplasmosis in wildlife: Babesia and Theileria affecting free-ranging ungulates and carnivores in the Italian Alps. Parasit Vectors. 2014; 7:70. BioMed Central Full Text
  • [20]Farkas R, Takács N, Hornyák A, Nachum-Biala Y, Hornok S, Baneth G. First report on Babesia cf. microti infection of red foxes (Vulpes vulpes) from Hungary. Parasit Vectors. 2015; 8:55. BioMed Central Full Text
  • [21]Camacho AT, Pallas E, Gestal JJ, Guitián FJ, Olmeda AS, Telford SR et al.. Ixodes hexagonus is the main candidate as vector of Theileria annae in northwest Spain. Vet Parasitol. 2003; 112:157-63.
  • [22]Lledó L, Giménez-Pardo C, Domínguez-Peñafiel G, Sousa R, Gegúndez MI, Casado N et al.. Molecular detection of hemoprotozoa and Rickettsia species in arthropods collected from wild animals in the Burgos Province, Spain. Vector Borne Zoonotic Dis. 2010; 10:735-8.
  • [23]Iori A, Gabrielli S, Calderini P, Moretti A, Pietrobelli M, Tampieri MP et al.. Tick reservoirs for piroplasms in central and northern Italy. Vet Parasitol. 2010; 170:291-6.
  • [24]Gou H, Guan G, Liu A, Ma M, Chen Z, Liu Z et al.. Coevolutionary analyses of the relationships between piroplasmids and their hard tick hosts. Ecol Evol. 2013; 3:2985-93.
  • [25]Jefferies R, Ryan UM, Jardine J, Broughton DK, Robertson ID, Irwin PJ. Blood, Bull Terriers and Babesiosis: further evidence for direct transmission of Babesia gibsoni in dogs. Aust Vet J. 2007; 85:459-63.
  • [26]Criado-Fornelio A, Martinez-Marcos A, Buling-Saraña A, Barba-Carretero JC. Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. Part II. Phylogenetic analysis and evolutionary history. Vet Parasitol. 2003; 114:173-94.
  • [27]Camacho AT, Guitian FJ, Pallas E, Gestal JJ, Olmeda S, Goethert H et al.. Serum protein response and renal failure in canine Babesia annae infection. Vet Res. 2005; 36:713-22.
  • [28]Camacho AT. Do eosinophils have a role in the severity of Babesia annae infection? Vet Parasitol. 2005; 134:281-2.
  • [29]Karbowiak G, Majláthová V, Hapunik J, Pet’ko B, Wita I. Apicomplexan parasites of red foxes (Vulpes vulpes) in northeastern Poland. Acta Parasitol. 2010; 55:210-4.
  • [30]Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792-7.
  • [31]Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol. 1992; 9:678-87.
  • [32]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30:2725-9.
  • [33]Mehlhorn H, Schein E, Ahmed JS. Theileria. In: Parasitic protozoa. Kreier JP, editor. Academic Press, Sand Diego; 1994: p.217-304.
  • [34]Kakoma I, Mehlhorn M. Babesia of domestic animals. In: Parasitic Protozoa. Kreier JP, editor. Academic Press, San Diego; 1994: p.141-216.
  • [35]Mehlhorn H, Schein E. Redescription of Babesia equi Laveran, 1901 as Theileria equi Mehlhorn, Schein 1998. Parasitol Res. 1998; 84:467-75.
  • [36]Kappmeyer LS, Thiagarajan M, Herndon DR, Ramsay JD, Caler E, Djikeng A et al.. Comparative genomic analysis and phylogenetic position of Theileria equi. BMC Genomics. 2012; 13:603. BioMed Central Full Text
  • [37]Criado-Fornelio A, Gónzalez-del-Río MA, Buling-Saraña A, Barba-Carretero JC. The “expanding universe” of piroplasms. Vet Parasitol. 2004; 119:337-45.
  • [38]Gray JS. Identity of the causal agents of human babesiosis in Europe. Int J Med Microbiol. 2006; 296 Suppl 40:131-6.
  • [39]Lack JB, Reichard MV, Van Den Bussche RA. Phylogeny and evolution of the Piroplasmida as inferred from 18S rRNA sequences. Int J Parasitol. 2012; 42:353-63.
  • [40]Sivakumar T, Hayashida K, Sugimoto C, Yokoyama N. Evolution and genetic diversity of Theileria. Infect Genet Evol. 2014; 27:250-63.
  • [41]Reichard MV, Van Den Bussche RA, Meinkoth JH, Hoover JP, Kocan AA. A new species of Cytauxzoon from Pallas’ cats caught in Mongolia and comments on the systematics and taxonomy of piroplasmids. J Parasitol. 2005; 91:420-6.
  • [42]Birkenheuer AJ, Whittington J, Neel J, Large E, Barger A, Levy MG et al.. Molecular characterization of a Babesia species identified in a North American raccoon. J Wildl Dis. 2006; 42:375-80.
  • [43]Goethert HK, Telford SR. What is Babesia microti? Parasitology. 2003; 127:301-9.
  • [44]Nakajima R, Tsuji M, Oda K, Zamoto-Niikura A, Wei Q, Kawabuchi-Kurata T et al.. Babesia microti-group parasites compared phylogenetically by complete sequencing of the CCTeta gene in 36 isolates. J Vet Med Sci. 2009; 71:55-68.
  • [45]Fujisawa K, Nakajima R, Jinnai M, Hirata H, Zamoto-Niikura A, Kawabuchi-Kurata T et al.. Intron sequences from the CCT7 gene exhibit diverse evolutionary histories among the four lineages within the Babesia microti-group, a genetically related species complex that includes human pathogens. Jpn J Infect Dis. 2011; 64:403-10.
  • [46]Zamoto-Niikura A, Tsuji M, Qiang W, Nakao M, Hirata H, Ishihara C. Detection of two zoonotic Babesia microti lineages, the Hobetsu and U.S. lineages, in two sympatric tick species, Ixodes ovatus and Ixodes persulcatus, respectively, in Japan. Appl Environ Microbiol. 2012; 78:3424-30.
  • [47]Criado-Fornelio A, Rey-Valeiron C, Buling A, Barba-Carretero JC, Jefferies R, Irwin P. New advances in molecular epizootiology of canine hematic protozoa from Venezuela, Thailand and Spain. Vet Parasitol. 2007; 144:261-9.
  • [48]Gimenez C, Casado N, Criado-Fornelio A, de Miguel FA, Dominguez-Peñafiel G. A molecular survey of Piroplasmida and Hepatozoon isolated from domestic and wild animals in Burgos (northern Spain). Vet Parasitol. 2009; 162:147-50.
  • [49]Hodžić A, Alić A, Fuehrer H-P, Harl J, Wille-Piazzai W, Duscher G. A molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasit Vectors. 2015; 8:88. BioMed Central Full Text
  • [50]Githaka N, Konnai S, Kariuki E, Kanduma E, Murata S, Ohashi K. Molecular detection and characterization of potentially new Babesia and Theileria species/variants in wild felids from Kenya. Acta Trop. 2012; 124:71-8.
  • [51]Reichard MV, Gray KM, Van den Bussche RA, d’Offay JM, White GL, Simecka CM et al.. Detection and experimental transmission of a novel Babesia isolate in captive olive baboons (Papio cynocephalus anubis). J Am Assoc Lab Anim Sci. 2011; 50:500-6.
  • [52]Penzhorn BL, Kjemtrup AM, López-Rebollar LM, Conrad PA. Babesia leo nov. sp. from lions in the Kruger National Park, South Africa, and its relation to other small piroplasms. J Parasitol. 2001; 87:681-5.
  文献评价指标  
  下载次数:0次 浏览次数:8次