期刊论文详细信息
Proteome Science
Comparative proteomic analysis implicates eEF2 as a novel target of PI3Kγ in the MDA-MB-231 metastatic breast cancer cell line
Shaun R McColl2  Peter Hoffmann2  Chareeporn Akekawatchai1  Briony Forbes2  Julie A Brazzatti3  Manuela Klingler-Hoffmann2  Meizhi Niu2 
[1] Current address: Department of Medical Technology, Thammasat University, Patumtani, 121212, Thailand;School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia;Current address: Immunology Group, Paterson Institute for cancer research, The University of Manchester, Manchester, M20 4BX, England
关键词: 2D-DIGE;    eEF2;    PI3Kγ;    CXCR4;    IGF-I;    Cell migration;    Receptor transactivation;   
Others  :  817084
DOI  :  10.1186/1477-5956-11-4
 received in 2012-08-06, accepted in 2012-12-23,  发布年份 2013
PDF
【 摘 要 】

Background

Cancer cell migration is fundamentally required for breast tumour invasion and metastasis. The insulin-like growth factor 1 tyrosine kinase receptor (IGF-1R) and the chemokine G-protein coupled receptor, CXCR4 have been shown to play an important role in breast cancer metastasis. Our previous study has shown that IGF-1R can transactivate CXCR4 via a physical association in the human MDA-MB-231 metastatic breast cancer cell line and that this plays a key role in IGF-I-induced migration of these cells. In the present study we used pharmacological inhibition and RNAi to identify PI3Kγ as an important migration signalling molecule downstream of receptor transactivation in MDA-MB-231 cells. To identify PI3Kγ-regulated proteins upon transactivation of CXCR4 by IGF-I, we undertook a comparative proteomics approach using 2-D- Fluorescence Difference Gel Electrophoresis (DIGE) and identified the proteins by mass spectrometry.

Results

These experiments identified eukaryotic elongation factor 2 (eEF2) as a novel downstream target of PI3Kγ after activation of the IGF-1R-CXCR4 heterodimer by IGF-I. Further analysis demonstrated that eEF2 is phosphorylated in MDA-MB-231 cells in response to IGF-I and that this is dependent on PI3Kγ activity.

Conclusions

Our data imply a novel role for PI3Kγ in facilitating cell migration by regulating phosphorylation of eEF2.

【 授权许可】

   
2013 Niu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710223924420.pdf 1096KB PDF download
Figure 4. 89KB Image download
Figure 3. 96KB Image download
Figure 2. 39KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Schafer B, Gschwind A, Ullrich A: Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 2004, 23:991-999.
  • [2]Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR: Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem 2005, 280:39701-39708.
  • [3]Holland JD, Kochetkova M, Akekawatchai C, Dottore M, Lopez A, McColl SR: Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells. Cancer Res 2006, 66:4117-4124.
  • [4]Procko E, McColl SR: Leukocytes on the move with phosphoinositide 3-kinase and its downstream effectors. Bioessays 2005, 27:153-163.
  • [5]Kundra V, Escobedo JA, Kazlauskas A, Kim HK, Rhee SG, Williams LT, Zetter BR: Regulation of chemotaxis by the platelet-derived growth factor receptor-beta. Nature 1994, 367:474-476.
  • [6]Radhakrishnan Y, Maile LA, Ling Y, Graves LM, Clemmons DR: Insulin-like growth factor-I stimulates Shc-dependent phosphatidylinositol 3-kinase activation via Grb2-associated p85 in vascular smooth muscle cells. J Biol Chem 2008, 283:16320-16331.
  • [7]Cantley LC: The phosphoinositide 3-kinase pathway. Science 2002, 296:1655-1657.
  • [8]Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD: Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001, 17:615-675.
  • [9]Saudemont A, Garcon F, Yadi H, Roche-Molina M, Kim N, Segonds-Pichon A, Martin-Fontecha A, Okkenhaug K, Colucci F: p110gamma and p110delta isoforms of phosphoinositide 3-kinase differentially regulate natural killer cell migration in health and disease. Proc Natl Acad Sci USA 2009, 106:5795-5800.
  • [10]Stephens L, Williams R, Hawkins P: Phosphoinositide 3-kinases as drug targets in cancer. Curr Opin Pharmacol 2005, 5:357-365.
  • [11]Schultz RM, Merriman RL, Andis SL, Bonjouklian R, Grindey GB, Rutherford PG, Gallegos A, Massey K, Powis G: In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 1995, 15:1135-1139.
  • [12]Hu L, Zaloudek C, Mills GB, Gray J, Jaffe RB: In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin Cancer Res 2000, 6:880-886.
  • [13]Sawyer C, Sturge J, Bennett DC, O'Hare MJ, Allen WE, Bain J, Jones GE, Vanhaesebroeck B: Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res 2003, 63:1667-1675.
  • [14]Edling CE, Selvaggi F, Buus R, Maffucci T, Di Sebastiano P, Friess H, Innocenti P, Kocher HM, Falasca M: Key role of phosphoinositide 3-kinase class IB in pancreatic cancer. Clin Cancer Res 2010, 16:4928-4937.
  • [15]Monterrubio M, Mellado M, Carrera AC, Rodriguez-Frade JM: PI3Kgamma activation by CXCL12 regulates tumor cell adhesion and invasion. Biochem Biophys Res Commun 2009, 388:199-204.
  • [16]Kruiswijk F, Yuniati L, Magliozzi R, Low TY, Lim R, Bolder R, Mohammed S, Proud CG, Heck AJ, Pagano M, Guardavaccaro D: Coupled activation and degradation of eEF2K regulates protein synthesis in response to genotoxic stress. Sci Signal 2012, 5:ra40.
  • [17]Brazzatti JA, Klingler-Hoffmann M, Haylock-Jacobs S, Harata-Lee Y, Niu M, Higgins MD, Kochetkova M, Hoffmann P, McColl SR: Differential roles for the p101 and p84 regulatory subunits of PI3Kgamma in tumor growth and metastasis. Oncogene 2012, 31:2350-2361.
  • [18]Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Francon B, et al.: Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 2005, 11:936-943.
  • [19]Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT: A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 1994, 77:83-93.
  • [20]Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002, 2:489-501.
  • [21]Woo JH, Kim HS: Phosphorylation of eukaryotic elongation factor 2 can be regulated by phosphoinositide 3-kinase in the early stages of myoblast differentiation. Mol Cells 2006, 21:294-301.
  • [22]Gschwind A, Hart S, Fischer OM, Ullrich A: TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J 2003, 22:2411-2421.
  • [23]Gschwind A, Prenzel N, Ullrich A: Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res 2002, 62:6329-6336.
  • [24]Ukegawa JI, Takeuchi Y, Kusayanagi S, Mitamura K: Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells. J Cancer Res Clin Oncol 2003, 129:272-278.
  • [25]Zhang Q, Thomas SM, Xi S, Smithgall TE, Siegfried JM, Kamens J, Gooding WE, Grandis JR: SRC family kinases mediate epidermal growth factor receptor ligand cleavage, proliferation, and invasion of head and neck cancer cells. Cancer Res 2004, 64:6166-6173.
  • [26]Noble PJ, Wilde G, White MR, Pennington SR, Dockray GJ, Varro A: Stimulation of gastrin-CCKB receptor promotes migration of gastric AGS cells via multiple paracrine pathways. Am J Physiol Gastrointest Liver Physiol 2003, 284:G75-84.
  • [27]Guerreiro AS, Fattet S, Fischer B, Shalaby T, Jackson SP, Schoenwaelder SM, Grotzer MA, Delattre O, Arcaro A: Targeting the PI3K p110alpha isoform inhibits medulloblastoma proliferation, chemoresistance, and migration. Clin Cancer Res 2008, 14:6761-6769.
  • [28]Hers I: Insulin-like growth factor-1 potentiates platelet activation via the IRS/PI3Kalpha pathway. Blood 2007, 110:4243-4252.
  • [29]Sun H, Kerfant BG, Zhao D, Trivieri MG, Oudit GY, Penninger JM, Backx PH: Insulin-like growth factor-1 and PTEN deletion enhance cardiac L-type Ca2+ currents via increased PI3Kalpha/PKB signaling. Circ Res 2006, 98:1390-1397.
  • [30]Doepfner KT, Spertini O, Arcaro A: Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 2007, 21:1921-1930. Epub 2007 Jun 1921
  • [31]Oak JS, Matheu MP, Parker I, Cahalan MD, Fruman DA: Lymphocyte cell motility: the twisting, turning tale of phosphoinositide 3-kinase. Biochem Soc Trans 2007, 35:1109-1113.
  • [32]Liu L, Puri KD, Penninger JM, Kubes P: Leukocyte PI3Kgamma and PI3Kdelta have temporally distinct roles for leukocyte recruitment in vivo. Blood 2007, 110:1191-1198.
  • [33]Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP: Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 2000, 287:1049-1053.
  • [34]Ryazanov AG, Rudkin BB, Spirin AS: Regulation of protein synthesis at the elongation stage. New insights into the control of gene expression in eukaryotes. FEBS Lett 1991, 285:170-175.
  • [35]Carlberg U, Nilsson A, Nygard O: Functional properties of phosphorylated elongation factor 2. Eur J Biochem 1990, 191:639-645.
  • [36]Vasudevan NT, Mohan ML, Gupta MK, Hussain AK, Naga Prasad SV: Inhibition of protein phosphatase 2A activity by PI3Kgamma regulates beta-adrenergic receptor function. Mol Cell 2011, 41:636-648.
  • [37]Everett AD, Stoops TD, Nairn AC, Brautigan D: Angiotensin II regulates phosphorylation of translation elongation factor-2 in cardiac myocytes. Am J Physiol Heart Circ Physiol 2001, 281:H161-167.
  • [38]Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C, Ear J, Jung BH, Cabrera B, Carethers JM, Farquhar MG: A G{alpha}i-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Mol Biol Cell 2010, 21:2338-2354.
  • [39]Saavedra A, Garcia-Martinez JM, Xifro X, Giralt A, Torres-Peraza JF, Canals JM, Diaz-Hernandez M, Lucas JJ, Alberch J, Perez-Navarro E: PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington's disease striatum. Cell Death Differ 2010, 17:324-335.
  文献评价指标  
  下载次数:41次 浏览次数:12次