期刊论文详细信息
Retrovirology
Spt6 levels are modulated by PAAF1 and proteasome to regulate the HIV-1 LTR
Rosemary Kiernan3  Bernard Mari2  Irina Lassot1  Imène-Sarah Henaoui2  Daniel Latreille3  Cyprien Beraud3  Emilie Rousset3  Poornima Basavarajaiah3  Mirai Nakamura3 
[1]Current address: IGMM, Montpellier, France
[2]University of Nice, Sophia Antipolis, Nice, France
[3]Laboratoire de Régulation des Gènes, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
关键词: proteasome;    PAAF1;    Spt6;    Tat;    transcription;    LTR;   
Others  :  1209342
DOI  :  10.1186/1742-4690-9-13
 received in 2011-12-01, accepted in 2012-02-08,  发布年份 2012
【 摘 要 】

Background

Tat-mediated activation of the HIV-1 promoter depends upon a proteasome-associated factor, PAAF1, which dissociates 26S proteasome to produce 19S RP that is essential for transcriptional elongation. The effect of PAAF1 on proteasome activity could also potentially shield certain factors from proteolysis, which may be implicated in the transcriptional co-activator activity of PAAF1 towards the LTR.

Results

Here, we show that Spt6 is targeted by proteasome in the absence of PAAF1. PAAF1 interacts with the N-terminus of Spt6, suggesting that PAAF1 protects Spt6 from proteolysis. Depletion of either PAAF1 or Spt6 reduced histone occupancy at the HIV-1 promoter, and induced the synthesis of aberrant transcripts. Ectopic Spt6 expression or treatment with proteasome inhibitor partially rescued the transcription defect associated with loss of PAAF1. Transcriptional profiling followed by ChIP identified a subset of cellular genes that are regulated in a similar fashion to HIV-1 by Spt6 and/or PAAF1, including many that are involved in cancer, such as BRCA1 and BARD1.

Conclusion

These results show that intracellular levels of Spt6 are fine-tuned by PAAF1 and proteasome, which is required for HIV-1 transcription and extends to cellular genes implicated in cancer.

【 授权许可】

   
2012 Nakamura et al; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 6. 37KB Image download
Figure 6. 110KB Image download
Figure 5. 72KB Image download
Figure 4. 90KB Image download
Figure 3. 52KB Image download
Figure 2. 47KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 6.

【 参考文献 】
  • [1]Bortvin A, Winston F: Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 1996, 272:1473-1476.
  • [2]Belotserkovskaya R, Oh S, Bondarenko VA, Orphides G, Studitsky VM, Reinberg D: FACT facilitates transcription-dependent nucleosome alteration. Science 2003, 301:1090-1093.
  • [3]Kaplan CD, Laprade L, Winston F: Transcription elongation factors repress transcription initiation from cryptic sites. Science 2003, 301:1096-1099.
  • [4]Adkins MW, Tyler JK: Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. Mol Cell 2006, 21:405-416.
  • [5]Ivanovska I, Jacques PE, Rando OJ, Robert F, Winston F: Control of chromatin structure by spt6: different consequences in coding and regulatory regions. Mol Cell Biol 2011, 31:531-541.
  • [6]Kaplan CD, Holland MJ, Winston F: Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J Biol Chem 2005, 280:913-922.
  • [7]Saunders A, Werner J, Andrulis ED, Nakayama T, Hirose S, Reinberg D, Lis JT: Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 2003, 301:1094-1096.
  • [8]Ardehali MB, Yao J, Adelman K, Fuda NJ, Petesch SJ, Webb WW, Lis JT: Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J 2009, 28:1067-1077.
  • [9]Endoh M, Zhu W, Hasegawa J, Watanabe H, Kim DK, Aida M, Inukai N, Narita T, Yamada T, Furuya A, Sato H, Yamaguchi Y, Mandal SS, Reinberg D, Wada T, Handa H: Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol Cell Biol 2004, 24:3324-333.
  • [10]Dengl S, Mayer A, Sun M, Cramer P: Structure and in vivo requirement of the yeast Spt6 SH2 domain. J Mol Biol 2009, 389:211-225.
  • [11]Yoh SM, Cho H, Pickle L, Evans RM, Jones KA: The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev 2007, 21:160-174.
  • [12]Andrulis ED, Werner J, Nazarian A, Erdjument-Bromage H, Tempst P, Lis JT: The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 2002, 420:837-841.
  • [13]Wu-Baer F, Lane WS, Gaynor RB: Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation. J Mol Biol 1998, 277:179-197.
  • [14]Vanti M, Gallastegui E, Respaldiza I, Rodriguez-Gil A, Gomez-Herreros F, Jimeno-Gonzalez S, Jordan A, Chavez S: Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription. PLoS Genet 2009, 5:e1000339.
  • [15]Gallastegui E, Millan-Zambrano G, Terme JM, Chavez S, Jordan A: Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol 2011, 85:3187-3202.
  • [16]Pickart CM, Cohen RE: Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 2004, 5:177-187.
  • [17]Collins GA, Tansey WP: The proteasome: a utility tool for transcription? Curr Opin Genet Dev 2006, 16:197-202.
  • [18]Lipford JR, Smith GT, Chi Y, Deshaies RJ: A putative stimulatory role for activator turnover in gene expression. Nature 2005, 438:113-116.
  • [19]Ferdous A, Gonzalez F, Sun L, Kodadek T, Johnston SA: The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol Cell 2001, 7:981-991.
  • [20]Gonzalez F, Delahodde A, Kodadek T, Johnston SA: Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 2002, 296:548-550.
  • [21]Kodadek T: No Splicing, no dicing: non-proteolytic roles of the ubiquitin-proteasome system in transcription. J Biol Chem 2010, 285:2221-2226.
  • [22]Scharf A, Grozdanov PN, Veith R, Kubitscheck U, Meier UT, von Mikecz A: Distant positioning of proteasomal proteolysis relative to actively transcribed genes. Nucleic Acids Res 2011, 39:4612-4627.
  • [23]Wang F, Chan CH, Chen K, Lin HK, Tong Q: Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 2011, in press.
  • [24]Li H, Wittwer T, Weber A, Schneider H, Moreno R, Maine GN, Kracht M, Schmitz ML, Burstein E: Regulation of NF-kappaB activity by competition between RelA acetylation and ubiquitination. Oncogene 2011, in press.
  • [25]Suhasini AN, Rawtani NA, Wu Y, Sommers JA, Sharma S, Mosedale G, North PS, Cantor SB, Hickson ID, Brosh RM Jr: Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome. EMBO J 2011, 30:692-705.
  • [26]Li G, Xu Y, Guan D, Liu Z, Liu DX: HSP70 protein promotes survival of C6 and U87 glioma cells by inhibition of ATF5 degradation. J Biol Chem 2011, 286:20251-20259.
  • [27]Lassot I, Latreille D, Rousset E, Sourisseau M, Linares LK, Chable-Bessia C, Coux O, Benkirane M, Kiernan RE: The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Mol Cell 2007, 25:369-383.
  • [28]Park Y, Hwang YP, Lee JS, Seo SH, Yoon SK, Yoon JB: Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol Cell Biol 2005, 25:3842-3853.
  • [29]Funakoshi M, Tomko RJ Jr, Kobayashi H, Hochstrasser M: Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 2009, 137:887-899.
  • [30]Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D: Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 2009, 459:861-865.
  • [31]Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Forster F, Baumeister W, Tanaka K, Robinson CV: The catalytic activity of ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell 2011, 42:637-649.
  • [32]DuChéné I, Basyuk E, Lin YL, Triboulet R, Knezevich A, Chable-Bessia C, Mettling C, Baillat V, Reynes J, Corbeau P, Bertrand E, Marcello A, Emiliani S, Kiernan R, Benkirane M: Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 2007, 26:424-435.
  • [33]Shi X, Finkelstein A, Wolf AJ, Wade PA, Burton ZF, Jaehning JA: Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription. Mol Cell Biol 1996, 16:669-676.
  • [34]Li B, Carey M, Workman JL: The role of chromatin during transcription. Cell 2007, 128:707-719.
  • [35]Wyrick JJ, Holstege FC, Jennings EG, Causton HC, Shore D, Grunstein M, Lander ES, Young RA: Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 1999, 402:418-421.
  • [36]Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A, Pradet-Balade B, Backer V, Kornblitt A, Marcello A, Bertrand E: The transcriptional cycle of HIV-1 in real-time and live cells. J Cell Biol 2007, 179:291-304.
  文献评价指标  
  下载次数:39次 浏览次数:42次