Molecular Pain | |
Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons | |
Shengyuan Yu2  Jianquan Zheng1  Xiaoyan Liu1  Jingyao Liang2  | |
[1] Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China;Department of Neurology, Chinese PLA General Hospital, Beijing 100853, PR China | |
关键词: Pain; Trigeminal ganglion; Patch clamp; Nav1.9; Amitriptyline; | |
Others : 862433 DOI : 10.1186/1744-8069-9-31 |
|
received in 2013-01-26, accepted in 2013-06-14, 发布年份 2013 | |
【 摘 要 】
Background
Amitriptyline (AMI) is tricyclic antidepressant that has been widely used to manage various chronic pains such as migraines. Its efficacy is attributed to its blockade of voltage-gated sodium channels (VGSCs). However, the effects of AMI on the tetrodotoxin-resistant (TTX-r) sodium channel Nav1.9 currents have been unclear to present.
Results
Using a whole-cell patch clamp technique, this study showed that AMI efficiently inhibited Nav1.9 currents in a concentration-dependent manner and had an IC50 of 15.16 μM in acute isolated trigeminal ganglion (TG) neurons of the rats. 10 μM AMI significantly shifted the steady-state inactivation of Nav1.9 channels in the hyperpolarizing direction without affecting voltage-dependent activation. Surprisingly, neither 10 nor 50 μM AMI caused a use-dependent blockade of Nav1.9 currents elicited by 60 pulses at 1 Hz.
Conclusion
These data suggest that AMI is a state-selective blocker of Nav1.9 channels in rat nociceptive trigeminal neurons, which likely contributes to the efficacy of AMI in treating various pains, including migraines.
【 授权许可】
2013 Liang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725014043822.pdf | 1203KB | download | |
58KB | Image | download | |
56KB | Image | download | |
62KB | Image | download | |
37KB | Image | download | |
54KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Wong MC, Chung JW, Wong TK: Effects of treatments for symptoms of painful diabetic neuropathy: systematic review. BMJ 2007, 335:87.
- [2]Smitherman TA, Walters AB, Maizels M, Penzien DB: The use of antidepressants for headache prophylaxis. CNS Neurosci Ther 2011, 17:462-469.
- [3]Coluzzi F, Mattia C: Mechanism-based treatment in chronic neuropathic pain: the role of antidepressants. Curr Pharm Des 2005, 11:2945-2960.
- [4]Onghena P, Van Houdenhove B: Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies. Pain 1992, 49:205-219.
- [5]Mao QX, Yang TD: Amitriptyline upregulates EAAT1 and EAAT2 in neuropathic pain rats. Brain Res Bull 2010, 81:424-427.
- [6]Dick IE, Brochu RM, Purohit Y, Kaczorowski GJ, Martin WJ, Priest BT: Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J Pain 2007, 8:315-324.
- [7]Gerner P, Srinivasa V, Zizza AM, Zhuang ZY, Luo S, Zurakowski D, Eappen S, Wang G: Doxepin by topical application and intrathecal route in rats. Anesth Analg 2006, 102:283-287.
- [8]Brau ME, Dreimann M, Olschewski A, Vogel W, Hempelmann G: Effect of drugs used for neuropathic pain management on tetrodotoxin-resistant Na(+) currents in rat sensory neurons. Anesthesiology 2001, 94:137-144.
- [9]Sudoh Y, Cahoon EE, Gerner P, Wang GK: Tricyclic antidepressants as long-acting local anesthetics. Pain 2003, 103:49-55.
- [10]Catterall WA, Goldin AL, Waxman SG: International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 2005, 57:397-409.
- [11]Thorstrand C, Bergstrom J, Castenfors J: Cardiac effects of amitriptyline in rats. Scand J Clin Lab Invest 1976, 36:7-15.
- [12]Ishii Y, Sumi T: Amitriptyline inhibits striatal efflux of neurotransmitters via blockade of voltage-dependent Na + channels. Eur J Pharmacol 1992, 221:377-380.
- [13]Pancrazio JJ, Kamatchi GL, Roscoe AK, Lynch C 3rd: Inhibition of neuronal Na + channels by antidepressant drugs. J Pharmacol Exp Ther 1998, 284:208-214.
- [14]Yan L, Wang Q, Fu Q, Ye Q, Xiao H, Wan Q: Amitriptyline inhibits currents and decreases the mRNA expression of voltage-gated sodium channels in cultured rat cortical neurons. Brain Res 2010, 1336:1-9.
- [15]Song JH, Ham SS, Shin YK, Lee CS: Amitriptyline modulation of Na(+) channels in rat dorsal root ganglion neurons. Eur J Pharmacol 2000, 401:297-305.
- [16]Leffler A, Reiprich A, Mohapatra DP, Nau C: Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-Resistant Nav1.8 than in TTX-sensitive Na + channels. J Pharmacol Exp Ther 2007, 320:354-364.
- [17]Hur YK, Choi IS, Cho JH, Park EJ, Choi JK, Choi BJ, Jang IS: Effects of carbamazepine and amitriptyline on tetrodotoxinresistant Na + channels in immature rat trigeminal ganglion neurons. Arch Pharm Res 2008, 31:178-182.
- [18]Akopian AN, Sivilotti L, Wood JN: A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 1996, 379:257-262.
- [19]Ebersberger A, Natura G, Eitner A, Halbhuber KJ, Rost R, Schaible HG: Effects of prostaglandin D2 on tetrodotoxin-resistant Na + currents in DRG neurons of adult rat. Pain 2011, 152:1114-1126.
- [20]Roy ML, Narahashi T: Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci 1992, 12:2104-2111.
- [21]Dib-Hajj S, Black JA, Cummins TR, Waxman SG: NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci 2002, 25:253-259.
- [22]Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG: A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 1999, 19:RC43.
- [23]Coste B, Osorio N, Padilla F, Crest M, Delmas P: Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 2004, 26:123-134.
- [24]Renganathan M, Cummins TR, Waxman SG: Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 2001, 86:629-640.
- [25]Rush AM, Cummins TR, Waxman SG: Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2007, 579:1-14.
- [26]Ostman JA, Nassar MA, Wood JN, Baker MD: GTP up-regulated persistent Na + current and enhanced nociceptor excitability require NaV1.9. J Physiol 2008, 586:1077-1087.
- [27]Amaya F, Decosterd I, Samad TA, Plumpton C, Tate S, Mannion RJ, Costigan M, Woolf CJ: Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol Cell Neurosci 2000, 15:331-342.
- [28]Eriksson J, Jablonski A, Persson AK, Hao JX, Kouya PF, Wiesenfeld-Hallin Z, Xu XJ, Fried K: Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model. Pain 2005, 119:82-94.
- [29]Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN: The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 2003, 550:739-752.
- [30]Fang X, Djouhri L, McMullan S, Berry C, Waxman SG, Okuse K, Lawson SN: Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J Neurosci 2006, 26:7281-7292.
- [31]Liang J, Yu S, Dong Z, Wang X, Liu R, Chen X, Li Z: The effects of OB-induced depression on nociceptive behaviors induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus. Brain Res 2011, 1424:9-19.
- [32]Fang Z, Park CK, Li HY, Kim HY, Park SH, Jung SJ, Kim JS, Monteil A, Oh SB, Miller RJ: Molecular basis of Ca(v)2.3 calcium channels in rat nociceptive neurons. J Biol Chem 2007, 282:4757-4764.
- [33]Wang GK, Russell C, Wang SY: State-dependent block of voltage-gated Na + channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain 2004, 110:166-174.
- [34]Glotzbach RK, Preskorn SH: Brain concentrations of tricyclic antidepressants: single-dose kinetics and relationship to plasma concentrations in chronically dosed rats. Psychopharmacology (Berl) 1982, 78:25-27.
- [35]Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA: Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 1993, 5:322-329.
- [36]John VH, Main MJ, Powell AJ, Gladwell ZM, Hick C, Sidhu HS, Clare JJ, Tate S, Trezise DJ: Heterologous expression and functional analysis of rat Nav1.8 (SNS) voltage-gated sodium channels in the dorsal root ganglion neuroblastoma cell line ND7–23. Neuropharmacology 2004, 46:425-438.
- [37]Ong BH, Tomaselli GF, Balser JR: A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 2000, 116:653-662.
- [38]Barber MJ, Starmer CF, Grant AO: Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. Circ Res 1991, 69:677-696.
- [39]Nau C, Wang GK: Interactions of local anesthetics with voltage-gated Na + channels. J Membr Biol 2004, 201:1-8.
- [40]Zhang XF, Shieh CC, Chapman ML, Matulenko MA, Hakeem AH, Atkinson RN, Kort ME, Marron BE, Joshi S, Honore P, et al.: A-887826 is a structurally novel, potent and voltage-dependent Na(v)1.8 sodium channel blocker that attenuates neuropathic tactile allodynia in rats. Neuropharmacology 2010, 59:201-207.
- [41]Gilchrist J, Bosmans F: Animal toxins can alter the function of Nav1.8 and Nav1.9. Toxins (Basel) 2012, 4:620-632.
- [42]Crill WE: Persistent sodium current in mammalian central neurons. Annu Rev Physiol 1996, 58:349-362.
- [43]Maingret F, Coste B, Padilla F, Clerc N, Crest M, Korogod SM, Delmas P: Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J Gen Physiol 2008, 131:211-225.
- [44]Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, Liberator P, Iyer LM, Kash SF, Kohler MG, et al.: Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci USA 2005, 102:9382-9387.
- [45]Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, et al.: The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 2006, 26:12852-12860.
- [46]Lolignier S, Amsalem M, Maingret F, Padilla F, Gabriac M, Chapuy E, Eschalier A, Delmas P, Busserolles J: Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 2011, 6:e23083.
- [47]Rush AM, Waxman SG: PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res 2004, 1023:264-271.
- [48]Cummins TR, Black JA, Dib-Hajj SD, Waxman SG: Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. J Neurosci 2000, 20:8754-8761.
- [49]Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J: Cost of disorders of the brain in Europe. Eur J Neurol 2005, 12(Suppl 1):1-27.
- [50]Yu S, Liu R, Zhao G, Yang X, Qiao X, Feng J, Fang Y, Cao X, He M, Steiner T: The prevalence and burden of primary headaches in China: a population-based door-to-door survey. Headache 2012, 52:582-591.
- [51]Pietrobon D: Migraine: new molecular mechanisms. Neuroscientist 2005, 11:373-386.
- [52]Burstein R: Deconstructing migraine headache into peripheral and central sensitization. Pain 2001, 89:107-110.
- [53]Wu W, Ye Q, Wang W, Yan L, Wang Q, Xiao H, Wan Q: Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons. Neurosci Lett 2012, 506:307-311.
- [54]Antonova M, Wienecke T, Olesen J, Ashina M: Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. Cephalalgia 2012, 32:822-833.
- [55]Neeb L, Hellen P, Boehnke C, Hoffmann J, Schuh-Hofer S, Dirnagl U, Reuter U: IL-1beta stimulates COX-2 dependent PGE(2) synthesis and CGRP release in rat trigeminal ganglia cells. PLoS One 2011, 6:e17360.
- [56]Giniatullin R, Nistri A, Fabbretti E: Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF. Mol Neurobiol 2008, 37:83-90.
- [57]Magni G, Ceruti S: P2Y purinergic receptors: New targets for analgesic and antimigraine drugs. Biochem Pharmacol 2013, 85:466-477.
- [58]Shimizu T: TRPV1 receptor as a therapeutical target for the treatment of migraine. Brain Nerve 2009, 61:949-956.
- [59]Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16:109-110.
- [60]Park CK, Bae JH, Kim HY, Jo HJ, Kim YH, Jung SJ, Kim JS, Oh SB: Substance P sensitizes P2X3 in nociceptive trigeminal neurons. J Dent Res 2010, 89:1154-1159.