Molecular Pain | |
Chronic inflammatory injury results in increased coupling of delta opioid receptors to voltage-gated Ca2+ channels | |
Wendy Walwyn1  Christopher Evans1  Brenna McGuire1  Monique Smith1  Amynah Pradhan1  | |
[1] Department of Neuropsychiatry and Biobehavioral Sciences, Stefan and Shirley Hatos Center for Neuropharmacology, Semel Institute, University of California, Los Angeles, CA, 90095, USA | |
关键词: Ca2+ channel; Dorsal root ganglia; Chronic pain; Delta opioid receptor; SNC80; Primary afferent; | |
Others : 862602 DOI : 10.1186/1744-8069-9-8 |
|
received in 2012-09-28, accepted in 2013-02-25, 发布年份 2013 | |
【 摘 要 】
Background
Opioid receptors regulate a diverse array of physiological functions. Mu opioid receptor agonists are well-known analgesics for treating acute pain. In contrast, animal models suggest that chronic pain is more effectively relieved by delta opioid receptor agonists. A number of studies have shown that chronic pain results in increased function of delta opioid receptors. This is proposed to result from enhanced trafficking of the delta opioid receptor to the cell membrane induced by persistent tissue injury. However, recent studies have questioned this mechanism, which has resulted in some uncertainty as to whether delta opioid receptors are indeed upregulated in chronic pain states. To clarify this question, we have examined the effect of chronic inflammatory pain over time using both an ex vivo measure of delta function: receptor-Ca2+ channel coupling, and an in vivo measure; the relief of chronic pain by a delta opioid receptor agonist. In addition, as beta-arrestin 2 can regulate delta opioid receptor trafficking and signaling, we have further examined whether deleting this scaffolding and signal transduction molecule alters delta opioid receptor function.
Results
We used the Complete Freund’s Adjuvant model of inflammatory pain, and examined the effectiveness of the delta agonist, SNC80, to both inhibit Ca2+ channels in primary afferent neurons and to attenuate mechanical allodynia. In naïve beta-arrestin 2 wildtype and knockout mice, SNC80 neither significantly inhibited voltage-dependent Ca2+ currents nor produced antinociception. However, following inflammatory pain, both measures showed a significant and long-lasting enhancement of delta opioid receptor function that persisted for up to 14 days post-injury regardless of genotype. Furthermore, although this pain model did not alter Ca2+ current density, the contribution of N-type Ca2+ channels to the total current appeared to be regulated by the presence of beta-arrestin 2.
Conclusions
Our results indicate that there is an upregulation of delta opioid receptor function following chronic pain. This gain of function is reflected in the increased efficacy of a delta agonist in both behavioral and electrophysiological measures. Overall, this work confirms that delta opioid receptors can be enhanced following tissue injury associated with chronic pain.
【 授权许可】
2013 Pradhan et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725015631596.pdf | 1955KB | download | |
67KB | Image | download | |
48KB | Image | download | |
51KB | Image | download | |
56KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Kieffer BL, Gaveriaux-Ruff C: Exploring the opioid system by gene knockout. Prog Neurobiol 2002, 66(5):285-306.
- [2]Al-Hasani R, Bruchas MR: Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115(6):1363-1381.
- [3]Administration, SAaMHS: Results from the 2010 National Survey on Drug Use and Health: Summary of National Findings. Publication No. (SMA)114658. Rockville, MD: US DEPARTMENT OF HEALTH AND HUMAN SERVICES, Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality; 2011. [NSDUH Series H-41,HHS]
- [4]Pradhan AA, Befort K, Nozaki C, Gaveriaux-Ruff C, Kieffer BL: The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 2011, 32(10):581-590.
- [5]Petrillo P, Angelici O, Bingham S, Ficalora G, Garnier M, Zaratin PF, Petrone G, Pozzi O, Sbacchi M, Stean TO, Upton N, Dondio GM, Scheideler MA: Evidence for a selective role of the delta-opioid agonist [8R-(4bS*,8aalpha,8abeta, 12bbeta)]7,10-Dimethyl-1-methoxy-11-(2-methylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9H)-4,8-methanobenzofuro[3,2-e]pyrrolo[2,3-g]isoquinoli ne hydrochloride (SB-235863) in blocking hyperalgesia associated with inflammatory and neuropathic pain responses. J Pharmacol Exp Ther 2003, 307(3):1079-1089.
- [6]Cahill CM, Morinville A, Hoffert C, O’Donnell D, Beaudet A: Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control. Pain 2003, 101(1–2):199-208.
- [7]Pradhan AA, Becker JA, Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Massotte D, Gaveriaux-Ruff C, Kieffer BL: In vivo delta opioid receptor internalization controls behavioral effects of agonists. PLoS One 2009, 4(5):e5425.
- [8]Pradhan AA, Walwyn W, Nozaki C, Filliol D, Erbs E, Matifas A, Evans C, Kieffer BL: Ligand-directed trafficking of the delta-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosci 2010, 30(49):16459-16468.
- [9]Kabli N, Cahill CM: Anti-allodynic effects of peripheral delta opioid receptors in neuropathic pain. Pain 2007, 127(1–2):84-93.
- [10]Gaveriaux-Ruff C, Nozaki C, Nadal X, Hever XC, Weibel R, Matifas A, Reiss D, Filliol D, Nassar MA, Wood JN, Maldonado R, Kieffer BL: Genetic ablation of delta opioid receptors in nociceptive sensory neurons increases chronic pain and abolishes opioid analgesia. Pain 2011, 152(6):1238-1248.
- [11]Zhang X, Bao L, Ma GQ: Sorting of neuropeptides and neuropeptide receptors into secretory pathways. Prog Neurobiol 2011, 90(2):276-283.
- [12]Bao L, Jin SX, Zhang C, Wang LH, Xu ZZ, Zhang FX, Wang LC, Ning FS, Cai HJ, Guan JS, Xiao HS, Xu ZQ, He C, Hokfelt T, Zhou Z, Zhang X: Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion. Neuron 2003, 37(1):121-133.
- [13]Zhao B, Wang HB, Lu YJ, Hu JW, Bao L, Zhang X: Transport of receptors, receptor signaling complexes and ion channels via neuropeptide-secretory vesicles. Cell Res 2011, 21(5):741-753.
- [14]Cahill CM, Morinville A, Lee MC, Vincent JP, Collier B, Beaudet A: Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. J Neurosci 2001, 21(19):7598-7607.
- [15]Patwardhan AM, Berg KA, Akopain AN, Jeske NA, Gamper N, Clarke WP, Hargreaves KM: Bradykinin-induced functional competence and trafficking of the delta-opioid receptor in trigeminal nociceptors. J Neurosci 2005, 25(39):8825-8832.
- [16]Guan JS, Xu ZZ, Gao H, He SQ, Ma GQ, Sun T, Wang LH, Zhang ZN, Lena I, Kitchen I, Elde R, Zimmer A, He C, Pei G, Bao L, Zhang X: Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell 2005, 122(4):619-631.
- [17]Cahill CM, Holdridge SV, Morinville A: Trafficking of delta-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci 2007, 28(1):23-31.
- [18]Gendron L, Lucido AL, Mennicken F, O’Donnell D, Vincent JP, Stroh T, Beaudet A: Morphine and pain-related stimuli enhance cell surface availability of somatic delta-opioid receptors in rat dorsal root ganglia. J Neurosci 2006, 26(3):953-962.
- [19]Pasquini F, Bochet P, Garbay-Jaureguiberry C, Roques BP, Rossier J, Beaudet A: Electron microscopic localization of photoaffinity-labelled delta opioid receptors in the neostriatum of the rat. J Comp Neurol 1992, 326(2):229-244.
- [20]Scherrer G, Imamachi N, Cao YQ, Contet C, Mennicken F, O’Donnell D, Kieffer BL, Basbaum AI: Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 2009, 137(6):1148-1159.
- [21]Wang HB, Zhao B, Zhong YQ, Li KC, Li ZY, Wang Q, Lu YJ, Zhang ZN, He SQ, Zheng HC, Wu SX, Hokfelt TG, Bao L, Zhang X: Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons. Proc Natl Acad Sci U S A 2010, 107(29):13117-13122.
- [22]Gupta A, Mulder J, Gomes I, Rozenfeld R, Bushlin I, Ong E, Lim M, Maillet E, Junek M, Cahill CM, Harkany T, Devi LA: Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci Signal 2010, 3(131):ra54.
- [23]Poole DP, Pelayo JC, Scherrer G, Evans CJ, Kieffer BL, Bunnett NW: Localization and regulation of fluorescently labeled delta opioid receptor, expressed in enteric neurons of mice. Gastroenterology 2011, 141(3):982-991. e1-8
- [24]Wang HB, Guan JS, Bao L, Zhang X: Distinct subcellular distribution of delta-opioid receptor fused with various tags in PC12 cells. Neurochem Res 2008, 33(10):2028-2034.
- [25]Qiu Y, Loh HH, Law PY: Phosphorylation of the delta-opioid receptor regulates its beta-arrestins selectivity and subsequent receptor internalization and adenylyl cyclase desensitization. J Biol Chem 2007, 282(31):22315-22323.
- [26]Rusin KI, Moises HC: Mu-Opioid receptor activation reduces multiple components of high-threshold calcium current in rat sensory neurons. J Neurosci 1995, 15(6):4315-4327.
- [27]Gallantine EL, Meert TF: A comparison of the antinociceptive and adverse effects of the mu-opioid agonist morphine and the delta-opioid agonist SNC80. Basic Clin Pharmacol Toxicol 2005, 97(1):39-51.
- [28]Fraser GL, Gaudreau GA, Clarke PB, Menard DP, Perkins MN: Antihyperalgesic effects of delta opioid agonists in a rat model of chronic inflammation. Br J Pharmacol 2000, 129(8):1668-1672.
- [29]Nadal X, Banos JE, Kieffer BL, Maldonado R: Neuropathic pain is enhanced in delta-opioid receptor knockout mice. Eur J Neurosci 2006, 23(3):830-834.
- [30]Gaveriaux-Ruff C, Karchewski LA, Hever X, Matifas A, Kieffer BL: Inflammatory pain is enhanced in delta opioid receptor-knockout mice. Eur J Neurosci 2008, 27(10):2558-2567.
- [31]Hurley RW, Hammond DL: The analgesic effects of supraspinal mu and delta opioid receptor agonists are potentiated during persistent inflammation. J Neurosci 2000, 20(3):1249-1259.
- [32]Pacheco Dda F, Pacheco CM, Duarte ID: Peripheral antinociception induced by delta-opioid receptors activation, but not mu- or kappa-, is mediated by Ca(2)(+)-activated Cl(−) channels. Eur J Pharmacol 2012, 674(2–3):255-259.
- [33]Zhang Z, Pan ZZ: Signaling cascades for delta-opioid receptor-mediated inhibition of GABA synaptic transmission and behavioral antinociception. Mol Pharmacol 2012, 81(3):375-383.
- [34]Walwyn W, Maidment NT, Sanders M, Evans CJ, Kieffer BL, Hales TG: Induction of delta opioid receptor function by up-regulation of membrane receptors in mouse primary afferent neurons. Mol Pharmacol 2005, 68(6):1688-1698.
- [35]Walwyn W, John S, Maga M, Evans CJ, Hales TG: Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca(2+) channels in dorsal root ganglion neurons. Mol Pharmacol 2009, 76(1):134-143.
- [36]Lu SG, Zhang XL, Luo ZD, Gold MS: Persistent inflammation alters the density and distribution of voltage-activated calcium channels in subpopulations of rat cutaneous DRG neurons. Pain 2010, 151(3):633-643.
- [37]Obara I, Parkitna JR, Korostynski M, Makuch W, Kaminska D, Przewlocka B, Przewlocki R: Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain. Pain 2009, 141(3):283-291.
- [38]Georganta EM, Agalou A, Georgoussi Z: Multi-component signaling complexes of the delta-opioid receptor with STAT5B and G proteins. Neuropharmacology 2010, 59(3):139-148.
- [39]Morinville A, Cahill CM, Kieffer B, Collier B, Beaudet A: Mu-opioid receptor knockout prevents changes in delta-opioid receptor trafficking induced by chronic inflammatory pain. Pain 2004, 109(3):266-273.
- [40]Gendron L, Pintar JE, Chavkin C: Essential role of mu opioid receptor in the regulation of delta opioid receptor-mediated antihyperalgesia. Neuroscience 2007, 150(4):807-817.
- [41]Rowan MP, Ruparel NB, Patwardhan AM, Berg KA, Clarke WP, Hargreaves KM: Peripheral delta opioid receptors require priming for functional competence in vivo. Eur J Pharmacol 2009, 602(2–3):283-287.
- [42]Ma J, Zhang Y, Kalyuzhny AE, Pan ZZ: Emergence of functional delta-opioid receptors induced by long-term treatment with morphine. Mol Pharmacol 2006, 69(4):1137-1145.
- [43]Chieng B, Christie MJ: Chronic morphine treatment induces functional delta-opioid receptors in amygdala neurons that project to periaqueductal grey. Neuropharmacology 2009, 57(4):430-437.
- [44]van Rijn RM, Brissett DI, Whistler JL: Emergence of functional spinal delta opioid receptors after chronic ethanol exposure. Biol Psychiatry 2012, 71(3):232-238.
- [45]Gao CJ, Niu L, Ren PC, Wang W, Zhu C, Li YQ, Chai W, Sun XD: Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest through regulation of delta opioid receptor system. Neuroscience 2011, 202:352-362.
- [46]Cayla C, Labuz D, Machelska H, Bader M, Schafer M, Stein C: Impaired nociception and peripheral opioid antinociception in mice lacking both kinin B1 and B2 receptors. Anesthesiology 2012, 116(2):448-457.
- [47]Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y: Current research on opioid receptor function. Curr Drug Targets 2012, 13(2):230-246.
- [48]Malatynska E, Wang Y, Knapp RJ, Waite S, Calderon S, Rice K, Hruby VJ, Yamamura HI, Roeske WR: Human delta opioid receptor: functional studies on stably transfected Chinese hamster ovary cells after acute and chronic treatment with the selective nonpeptidic agonist SNC-80. J Pharmacol Exp Ther 1996, 278(3):1083-1089.
- [49]Trapaidze N, Keith DE, Cvejic S, Evans CJ, Devi LA: Sequestration of the delta opioid receptor. Role of the C terminus in agonist-mediated internalization. J Biol Chem 1996, 271(46):29279-29285.
- [50]Ko JL, Arvidsson U, Williams FG, Law PY, Elde R, Loh HH: Visualization of time-dependent redistribution of delta-opioid receptors in neuronal cells during prolonged agonist exposure. Brain Res Mol Brain Res 1999, 69(2):171-185.
- [51]Whistler JL, Enquist J, Marley A, Fong J, Gladher F, Tsuruda P, Murray SR, Von Zastrow M: Modulation of postendocytic sorting of G protein-coupled receptors. Science 2002, 297(5581):615-620.
- [52]Zhang X, Wang F, Chen X, Chen Y, Ma L: Post-endocytic fates of delta-opioid receptor are regulated by GRK2-mediated receptor phosphorylation and distinct beta-arrestin isoforms. J Neurochem 2008, 106(2):781-792.
- [53]Archer-Lahlou E, Audet N, Amraei MG, Huard K, Paquin-Gobeil M, Pineyro G: Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling. J Cell Mol Med 2009, 13(1):147-163.
- [54]Walwyn W, Evans CJ, Hales TG: Beta-arrestin2 and c-Src regulate the constitutive activity and recycling of mu opioid receptors in dorsal root ganglion neurons. J Neurosci 2007, 27(19):5092-5104.
- [55]Pradhan AA, Walwyn W, Nozaki C, Filliol D, Erbs E, Matifas A, Evans C, Kieffer BL: Ligand-directed trafficking of the delta-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosci 2011, 30(49):16459-16468.
- [56]Rola R, Szulczyk PJ, Witkowski G: Voltage-dependent Ca2+ currents in rat cardiac dorsal root ganglion neurons. Brain Res 2003, 961(1):171-178.
- [57]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53(1):55-63.
- [58]Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, DeMartino JA, MacIntyre DE, Forrest MJ: Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A 2003, 100(13):7947-7952.