Molecular Neurodegeneration | |
Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP swe/PS1 mice | |
J. Olcese1  P. C. Bradshaw2  V. Delic2  G. O’Neal-Moffitt1  | |
[1] Department of Biomedical Sciences, College of Medicine, Florida State University Program in Neuroscience, 1115 West Call Street, Tallahassee 32306, FL, USA;Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa 33620, FL, USA | |
关键词: Cytochrome c oxidase; Mice; Cognition; Melatonin receptors; Alzheimer’s; Melatonin; | |
Others : 1218644 DOI : 10.1186/s13024-015-0027-6 |
|
received in 2015-04-17, accepted in 2015-06-30, 发布年份 2015 | |
【 摘 要 】
Background
Alzheimer’s disease (AD) underlies dementia for millions of people worldwide, and its occurrence is set to double in the next 20 years. Currently, approved drugs for treating AD only marginally ameliorate cognitive deficits, and provide limited symptomatic relief, while newer substances under therapeutic development are potentially years away from benefiting patients. Melatonin (MEL) for insomnia has been proven safe with >15 years of over-the-counter access in the US. MEL exerts multiple complementary mechanisms of action against AD in animal models; thus it may be an excellent disease-modifying therapeutic. While presumed to provide neuroprotection via activation of known G-protein-coupled melatonin receptors (MTNRs), some data indicate MEL acts intracellularly to protect mitochondria and neurons by scavenging reactive oxygen species and reducing free radical formation. We examined whether genetic deletion of MTNRs abolishes MEL’s neuroprotective actions in the AβPP swe /PSEN1dE9 mouse model of AD (2xAD). Beginning at 4 months of age, both AD and control mice either with or without both MTNRs were administered either MEL or vehicle in drinking water for 12 months.
Results
Behavioral and cognitive assessments of 15-month-old AD mice revealed receptor-dependent effects of MEL on spatial learning and memory (Barnes maze, Morris Water Maze), but receptor-independent neuroprotective actions of MEL on non-spatial cognitive performance (Novel Object Recognition Test). Similarly, amyloid plaque loads in hippocampus and frontal cortex, as well as plasma Aβ 1–42levels, were significantly reduced by MEL in a receptor-independent manner, in contrast to MEL’s efficacy in reducing cortical antioxidant gene expression (Catalase, SOD1, Glutathione Peroxidase-1, Nrf2) only when receptors were present. Increased cytochrome c oxidase activity was seen in 16mo AD mice as compared to non-AD control mice. This increase was completely prevented by MEL treatment of 2xAD/MTNR+ mice, but only partially prevented in 2xAD/MTNR- mice, consistent with mixed receptor-dependent and independent effects of MEL on this measure of mitochondrial function.
Conclusions
These findings demonstrate that prophylactic MEL significantly reduces AD neuropathology and associated cognitive deficits in a manner that is independent of antioxidant pathways. Future identification of direct molecular targets for MEL action in the brain should open new vistas for development of better AD therapeutics.
【 授权许可】
2015 O'Neal-Moffitt et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150712045034611.pdf | 31862KB | download | |
Fig. 10. | 80KB | Image | download |
Fig. 9. | 75KB | Image | download |
Fig. 8. | 69KB | Image | download |
Fig. 7. | 71KB | Image | download |
Fig. 6. | 26KB | Image | download |
Fig. 5. | 95KB | Image | download |
Fig. 4. | 75KB | Image | download |
Fig. 3. | 43KB | Image | download |
Fig. 2. | 75KB | Image | download |
Fig. 1. | 72KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
【 参考文献 】
- [1]Rodda J, Morgan S, Walker Z. Are cholinesterase inhibitors effective in the management of the behavioral and psychological symptoms of dementia in Alzheimer's disease? A systematic review of randomized, placebo-controlled trials of donepezil, rivastigmine and galantamine. Int Psychogeriatr. 2009; 21(5):813-824.
- [2]Lane RF, Shineman DW, Steele JW, Lee LB, Fillit HM. Beyond Amyloid: The future of Therapeutics for Alzheimer’s Disease. Adv Pharmacol. 2012; 64:213-271.
- [3]Mullane K, Williams M. Alzheimer’s therapeutics: continued clinical failures question the validity of the amyloid hypothesis – but what lies beyond? Biochem Pharmacol. 2013;85(3):289–305.
- [4]Macchi MM, Bruce JM. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004; 25(3–4):177-195.
- [5]Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein coupled melatonin receptors. Pharmacol Rev. 2010; 62(3):343-380.
- [6]Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental, fetal physiology. Hum Reprod Update. 2014; 20(2):293-307.
- [7]Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev. 2005; 9(1):25-39.
- [8]Wu YH, Feenstra MG, Zhou JN, Liu RY, Toranõ JS, Van Kan HJ, et al. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab. 2003;88(12):5898–906.
- [9]Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res. 2003; 35(2):125-130.
- [10]Brusco LI, Márquez M, Cardinali DP. Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer's disease. Neuro Endocrinol Lett. 2000; 21(1):39-42.
- [11]Furio AM, Brusco L, Cardinali DP. Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study. J Pineal Res. 2007; 43(4):404-409.
- [12]Brusco L, Márquez M, Cardinali DP. Monozygotic twins with Alzheimer's disease treated with melatonin: Case report. J Pineal Res. 1998; 25(4):260-263.
- [13]Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: An established antioxidant worthy of use in clinical trials. Mol Med. 2009; 15:43-50.
- [14]Bonnefont-Rousselot D, Collin F. Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology. 2010; 278(1):55-67.
- [15]Yeleswaram K, McLaughlin LG, Knipe JO, Schabdach D. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res. 1997; 22(1):45-51.
- [16]Pappolla M, Bozner P, Soto C, Shao H, Robakis NK, Zagorski M, et al. Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem. 1998;273(13):7185–8.
- [17]Poeggeler B, Miravalle L, Zagorski MG, Wisniewski T, Chyan YJ, Zhang Y, et al. Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry. 2001;40(49):14995–5001.
- [18]Cheng X, van Breemen RB. Mass spectrometry-based screening for inhibitors of beta-amyloid protein aggregation. Anal Chem. 2005; 77(21):7012-7015.
- [19]Skribanek Z, Baláspiri L, Mák M. Interaction between synthetic amyloid-beta-peptide (1–40) and its aggregation inhibitors studied by electrospray ionization mass spectrometry. J Mass Spectrom. 2001; 36(11):1226-1229.
- [20]Fraser PE, Nguyen JT, Surewicz WK, Kirschner DA. pH-dependent structural transitions of Alzheimer amyloid peptides. Biophys J. 1991; 60(5):1190-1201.
- [21]Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I, et al. Melatonin attenuates amyloid beta25-35-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett. 2005;380(1–2):26–31.
- [22]Gunasingh MJ, Philip JE, Ashok BS, Kirubagaran R, Jebaraj WC, Davis GD, et al. Melatonin prevents amyloid protofibrillar induced oxidative imbalance and biogenic amine catabolism. Life Sci. 2008;83(3–4):96–102.
- [23]Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47(1):82–96.
- [24]Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, et al. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. J Neurochem. 2003;85(5):1101–8.
- [25]Peng CX, Hu J, Liu D, Hong XP, Wu YY, Zhu LQ, et al. Disease-modified glycogen synthase kinase-3β intervention by melatonin arrests the pathology and memory deficits in an Alzheimer’s animal model. Neurobiol Aging. 2013;34(6):1555–63.
- [26]Quinn J, Kulhanek D, Nowlin J, Jones R, Pratico D, Rokach J, et al. Chronic melatonin therapy fails to alter amyloid burden or oxidative damage in old Tg2576 mice: implications for clinical trials. Brain Res. 2005;1037(1–2):209–13.
- [27]Guerrero J, Reiter R. Melatonin-immune system relationships. Curr Top Med Chem. 2002; 2(2):167-179.
- [28]Caballero B, Vega-Naredo I, Sierra V, Huidobro-Fernández C, Soria-Valles C, De Gonzalo-Calvo D, et al. Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. J Pineal Res. 2008;45(3):302–11.
- [29]Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflaming. Prog Neurobiol. 2015; 127-128C:46-63.
- [30]Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velázquez M, Martínez-Barboza G, Acosta-Martínez JP, et al. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-beta peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res. 2003;35(2):80–4.
- [31]Mayo JC, Sainz RM, Tan DX, Hardeland R, Leon J, Rodriguez C, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl 5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165(1–2):139–49.
- [32]Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi-Perumal SR, et al. Melatonin in mood disorders. World J Biol Psychiatry. 2006;7(3):138–51.
- [33]Dragicevic N, Copes N, O’Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M, et al. Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res. 2011;51(1):75–86.
- [34]Li XC, Wang ZF, Zhang JX, Wang Q, Wang JZ. Effect of melatonin on calyculin A-induced tau hyperphosphorylation. Eur J Pharmacol. 2005;510(1–2):25–30.
- [35]Kaur C, Sivakumar V, Yong Z, Lu J, Foulds WS, Ling EA. Blood-retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J Pathol. 2007; 212(4):429-439.
- [36]Letechipía-Vallejo G, López-Loeza E, Espinoza-González V, González-Burgos I, Olvera-Cortés ME, Moralí G, et al. Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats. J Pineal Res. 2007;42(2):138–46.
- [37]García-Chávez D, González-Burgos I, Letechipía-Vallejo G, López-Loeza E, Moralí G, Cervantes M. Long-term evaluation of cytoarchitectonic characteristics of prefrontal cortex pyramidal neurons, following global cerebral ischemia and neuroprotective melatonin treatment, in rats. Neurosci Lett. 2008; 448(1):148-152.
- [38]Domínguez-Alonso A, Ramirez-Rodríguez G, Benítez-King G. Melatonin increases dendritogenesis in the hilus of hippocampal organotypic cultures. J Pineal Res. 2012; 52(4):427-436.
- [39]McKenna JT, Christie MA, Jeffrey BA, McCoy JG, Lee E, Connolly NP, et al. Chronic ramelteon treatment in a mouse model of Alzheimer’s disease. Arch Ital Biol. 2012;150(1):5–14.
- [40]Baño Otalora B, Popovic N, Gambini J, Popovic M, Viña J, Bonet-Costa V, et al. Circadian system functionality, hippocampal oxidative stress and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon. Chronobiol Intl. 2012;29(7):822–34.
- [41]Mathes AM, Kubulus D, Waibel L, Weiler J, Heymann P, Wolf B, et al. Selective activation of melatonin receptors with ramelteon improves liver function and hepatic perfusion after hemorrhagic shock in rat. Crit Care Med. 2008;36:2863–70.
- [42]O’Neal-Moffitt G, Pilli J, Kumar SS, Olcese JM. Genetic deletion of MT1/MT2 melatonin receptors enhances murine cognitive and motor performance. Neuroscience. 2014; 277:506-521.
- [43]Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis. 2009;35(3):426–32.
- [44]Zhang R, Xue G, Wang S, Zhang L, Shi C, Xie X. Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer’s disease mouse model. J Alzheimers Dis. 2012; 31(4):801-812.
- [45]Petrosillo G, De Benedictis V, Ruggiero FM, Paradies G. Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging. Role of peroxidized cardiolipin and beneficial effect of melatonin. J Bioenerg Biomembr. 2013; 45(5):431-440.
- [46]Chang HM, Tseng CY, Wei IH, Lue JH, Wen CY, Shieh JY. Melatonin restores the cytochrome oxidase reactivity in the nodose ganglia of acute hypoxic rats. J Pineal Res. 2005; 39(2):206-214.
- [47]Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, Arendash GW, et al. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer's transgenic mice. J Alzheimers Dis. 2010;20 Suppl 2:S535–550.
- [48]Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS. Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A. 2010; 107(43):18670-18675.
- [49]Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, et al. Trounce IA Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci. 2005;25:672–9.
- [50]Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. J Pineal Res. 2004;37(2):129–36.
- [51]Feng Z, Qin C, Chang Y, Zhang JT. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer's disease. Free Radic Biol Med. 2006; 40(1):101-109.
- [52]52 García-Mesa Y, Giménez-Liort L, López LC, Venegas C, Cristòfol R, Escames G, Acuña-Castroviejo D, Sanfeliu C. Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging. 2012;33(6):1124.e13-29.
- [53]Rosales-Corral S, Acuña-Castroviejo D, Tan DX, López-Armas G, Cruz-Ramos J, Munoz R, et al. Accumulation of exogenous amyloid-beta peptide in hippocampal mitochondria causes their dysfunction: a protective role for melatonin. Oxid Med Cell Longev. 2012. doi:10.1155/2012/843649.
- [54]Volianskis A, Køstner R, Mølgaard M, Hass S, Jensen MS. Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1ΔE9-deleted transgenic mice model of β-amyloidosis. Neurobiol Aging. 2010; 31(7):1173-1187.
- [55]Papp M, Litwa E, Gruca P, Mocaër E. Anxiolytic-like activity of agomelatine and melatonin in three animal models of anxiety. Behav Pharmacol. 2006; 17(1):9-18.
- [56]Crupi R, Mazzon E, Marino A, La Spada G, Bramanti P, Cuzzocrea S, et al. Melatonin treatment mimics the antidepressant action in chronic corticosterone-treated mice. J Pineal Res. 2010;49(2):123–9.
- [57]Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B. Hardeland R Melatonin in Alzheimer's disease and other neurodegenerative disorders. Behav Brain Funct. 2006; 2:15. BioMed Central Full Text
- [58]Caumo W, Levandovski R, Hidalgo MP. Preoperative anxiolytic effect of melatonin and clonidine on postoperative pain and morphine consumption in patients undergoing abdominal hysterectomy: a double-blind, randomized, placebo-controlled study. J Pain. 2009; 10(1):100-108.
- [59]Ochoa-Sanchez R, Rainer Q, Comai S, Spadoni G, Gedini A, Rivara S, et al. Anxiolytic effects of the melatonin MT(2) receptor partial agonist UCM765: comparison with melatonin and diazepam. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(2):318–25.
- [60]Di Paolo C, Revert I, Colomina MT, Domingo JL, Gómez M. Chronic exposure to aluminum and melatonin through the diet: Neurobehavioral effects in a transgenic mouse model of Alzheimer disease. Food Chem Toxicol. 2014; 69:320-329.
- [61]Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, et al. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci. 2009;29(11):3453–62.
- [62]Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet. 2004;13(2):159–70.
- [63]Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Trojanowski JQ Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.
- [64]Ji Y, Permanne B, Sigurdsson EM, Holtzman DM, Wisniewski T. Amyloid beta40/42 clearance across the blood–brain barrier following intra-ventricular injections in wild-type apoE knock-out and human apoE3 or E4 expressing transgenic mice. J Alzheimers Dis. 2001; 3(1):23-30.
- [65]Domert J, Rao SB, Agholme L, Brorsson AC, Marcusson J, Hallbeck M, et al. Spreading of amyloid-β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiol Dis. 2014;65:82–92.
- [66]Shukla M, Htoo HH, Wintachal P, Hernandez F, Dubois C, Postina R, et al. Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J Pineal Res. 2015;58:151–65.
- [67]Rodríguez Santiago B, Casademont J, Nunes V. Is there a relation between Alzheimer’s disease and defects of mitochondrial DNA? Rev Neurol. 2001; 33(4):301-305.
- [68]Parks JK, Smith TS, Trimmer PA, Bennett JP, Parker WD. Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem. 2001; 76(4):1050-1056.
- [69]Leuner K, Müller WE, Reichert AS. From Mitochondrial Dysfunction to Amyloid beta Formation: Novel Insights into the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol. 2012; 46:186-193.
- [70]Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006; 15(9):1437-1449.
- [71]Navarro A. Mitochondrial enzyme activities as biochemical markers of aging. Mol Aspects Med. 2004; 25(1–2):37-48.
- [72]Gutsaeva DR, Suliman HB, Carraway MS, Demchenko IT, Piantadosi CA. Oxygen-induced mitochondrial biogenesis in the rat hippocampus. Neuroscience. 2006; 137(2):493-504.
- [73]Yoboue ED, Devin A. Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol. 2012.
- [74]López A, García JA, Escames G, Venegas C, Ortiz F, López LC, et al. Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res. 2009;46(2):188–98.
- [75]Song J, Kang SM, Lee KM, Lee JE. The protective effect of melatonin on neural stem cell against LPS-induced inflammation. Biomed Res Int. 2015; 2015:854359.
- [76]Strazielle C, Sturchler-Pierrat C, Staufenbiel M, Lalonde R. Regional brain cytochrome oxidase activity in beta-amyloid precursor protein transgenic mice with the Swedish mutation. Neuroscience. 2003; 118(4):1151-1163.
- [77]Poirier GL, Amin E, Good MA, Aggleton JP. Early-onset dysfunction of retrosplenial cortex precedes overt amyloid plaque formation in Tg2576 mice. Neuroscience. 2011; 174:71-83.
- [78]Cuadrado-Tejedor M, Cabodevilla JF, Zamarbide M, Gómez-Isla T, Franco R, Perez-Mediavilla A. Age-related mitochondrial alterations without neuronal loss in the hippocampus of a transgenic model of Alzheimer's disease. Curr Alzheimer Res. 2013; 10(4):390-405.
- [79]Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet. 2004;13(12):1225–40.
- [80]Zhu X, Perry G, Moreira PI, Aliev G, Cash AD, Hirai K, et al. Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimers Dis. 2006;9(2):147–53.
- [81]Demetrius LA, Magistretti PJ, Pellerin L. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect. Front Physiol. 2015; 5:522.
- [82]Valla J, Schneider LE, Small AM, Gonzalez-Lima F. Quantitative Cytochrome Oxidase Histochemistry: Applications in Human Alzheimer's Disease and Animal Models. Journal of Histotechnology. 2007; 30:235-247.
- [83]Varghese M, Zhao W, Wang J, Cheng A, Qian X, Chaudhry A, et al. Mitochondrial bioenergetics is defective in presymptomatic Tg2576 AD mice. Transl Neurosci. 2011;2(1):1–5.
- [84]Zhang XM, Xiong K, Cai Y, Cai H, Luo XG, Feng JC, et al. Functional deprivation promotes amyloid plaque pathogenesis in Tg2576 mouse olfactory bulb and piriform cortex. Eur J Neurosci. 2010;31(4):710–21.
- [85]Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci U S A. 2009;106(47):20057–62.
- [86]Wolf AB, Braden BB, Bimonte-Nelson H, Kusne Y, Young N, Engler-Chiurazzi E, et al. Broad-based nutritional supplementation in 3xTg mice corrects mitochondrial function and indicates sex-specificity in response to Alzheimer's disease intervention. J Alzheimers Dis. 2012;32(1):217–32.
- [87]Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R. Atlante A (2013) Mitochondrial respiratory chain Complexes I and IV are impaired by beta-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion. 2013; 13(4):298-311.
- [88]Vladimirov YA, Proskurnina EV, Izmailov DY, Novikov AA, Brusnichkin AV, Osipov AN, et al. Mechanism of activation of cytochrome C peroxidase activity by cardiolipin. Biochemistry (Mosc). 2006;71(9):989–97.
- [89]Hong WK, Han EH, Kim DG, Ahn JY, Park JS, Han BG. Amyloid-beta-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits. Neurochem Res. 2007; 32:1483-1488.
- [90]Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007; 129:111-122.
- [91]Huttemann M, Lee I, Grossman LI, Doan JW, Sanderson TH. Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease. Adv Exp Med Biol. 2012; 748:237-264.
- [92]Praticò D, Uryu K, Leight S, Trojanoswki JQ, Lee VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001; 21(12):4183-4187.
- [93]Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, et al. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem. 2005;280(22):20978–86.
- [94]Resende R, Moreira PI, Proença T, Deshpande A, Busciglio J, Pereira C, et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med. 2008;44(12):2051–7.
- [95]Kotler M, Rodríguez C, Sáinz RM, Antolín I, Menéndez-Peláez A. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res. 1998; 24(2):83-89.
- [96]Mayo JC, Sainz RM, Antoli I, Herrera F, Martin V, Rodriguez C. Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci. 2002; 59(10):1706-1713.
- [97]Subramanian P, Mirunalini S, Pandi-Perumal SR, Trakht I, Cardinali DP. Melatonin treatment improves the antioxidant status and decreases lipid content in brain and liver of rats. Eur J Pharmacol. 2007; 571(2–3):116-119.
- [98]Ding K, Wang H, Xu J, Li T, Zhang L, Ding Y, et al. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2-ARE signaling pathway as a potential mechanism. Free Radic Biol Med. 2014;73C:1–11.
- [99]Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, et al. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res. 2013;23(3):267–300.
- [100]Liu C, Weaver DR, Jin X, Shearman LP, Pieschi RL, Gribkoff VK, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19(1):91–102.
- [101]Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, et al. Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol. 2003;23(3):1054–60.
- [102]Ebihara S, Marks T, Hudson DJ, Menaker M. Genetic control of melatonin synthesis in the pineal gland of the mouse. Science. 1986; 23(4737):491-493.
- [103]Roseboom PH, Namboodiri MA, Zimonjic DB, Popescu NC, Rodriguez IR, Gastel JA, et al. Natural melatonin ‘knockdown’ in C57BL/6 J mice: rare mechanism truncates serotonin N-acetyltransferase. Brain Res Mol Brain Res. 1998;63(1):189–97.
- [104]Kasahara T, Abe K, Mekada K, Yoshiki A, Kato T. Genetic variation of melatonin productivity in laboratory mice under domestication. Proc Nat Acad Sci U S A. 2010; 107:6412-6417.
- [105]Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008; 22(3):659-61.
- [106]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5(7):621-628.
- [107]Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc. 2006; 1(3):1306-1311.
- [108]Hoffman GE, Le WW, Sita LV. Current Protocols in Neuroscience: The importance of titrating antibodies for immunocytochemical methods. Wiley;. 2008.
- [109]Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.
- [110]Golde WT, Gollobin P, Rodriguez LL. A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim. 2005; 34(9):39-43.
- [111]Villani G, Attardi G. Polarographic assays of respiratory chain complex activity. Methods Cell Biol. 2007; 80:121-133.