期刊论文详细信息
Particle and Fibre Toxicology
Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen
Guiyun Yan4  Andrew K Githeko1  Yaw A Afrane1  Eliningaya J Kweka2  Thomas M Gilbreath3 
[1] Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu 40100, Kenya;Division of Livestock and Human Diseases Vector Control, Mosquito Section, Tropical Pesticides Research Institute, Ngaramtoni, Off Nairobi Road, P.O. Box 3024, Arusha, Tanzania;Ecology and Evolutionary Biology, University of California, 3501b Hewitt Hall, Irvine, CA 92697, USA;Program in Public Health, University of California, Irvine, CA 92697, USA
关键词: Trophic preferences;    δ15N;    δ13C;    Resource partitioning;    Stable isotopes;    An. gambiae;   
Others  :  823590
DOI  :  10.1186/1756-3305-6-353
 received in 2013-06-28, accepted in 2013-12-02,  发布年份 2013
PDF
【 摘 要 】

Background

In sub-Saharan Africa, malaria, transmitted by the Anopheles mosquito, remains one of the foremost public health concerns. Anopheles gambiae, the primary malaria vector in sub-Saharan Africa, is typically associated with ephemeral, sunlit habitats; however, An. gambiae larvae often share these habitats with other anophelines along with other disease-transmitting and benign mosquito species. Resource limitations within habitats can constrain larval density and development, and this drives competitive interactions among and between species.

Methods

We used naturally occurring stable isotope ratios of carbon and nitrogen to identify resource partitioning among co-occurring larval species in microcosms and natural habitats in western Kenya. We used two and three source mixing models to estimate resource utilization (i.e. bacteria, algae, organic matter) by larvae.

Results

Laboratory experiments revealed larval δ13C and δ15N composition to reflect the food sources they were reared on. Resource partitioning was demonstrated between An. gambiae and Culex quinquefasciatus larvae sharing the same microcosms. Differences in larval δ13C and δ15N content was also evident in natural habitats, and Anopheles species were consistently more enriched in δ13C when compared to culicine larvae.

Conclusions

These observations demonstrate inter-specific resource partitioning between Cx. quinquefasciatus and An. gambiae larvae in natural habitats in western Kenya. This information may be translated into opportunities for targeted larval control efforts by limiting specific larval food resources, or through bio-control utilizing competitors at the same trophic level.

【 授权许可】

   
2013 Gilbreath et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713011050833.pdf 375KB PDF download
Figure 4. 45KB Image download
Figure 3. 56KB Image download
Figure 2. 53KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Kirby M, Lindsay S: Effect of temperature and inter-specific competition on the development and survival of Anopheles gambiae sensu stricto and An. arabiensis larvae. Acta Trop 2009, 109(2):118-123.
  • [2]Kweka EJ, Zhou G, Beilhe LB, Dixit A, Afrane Y, Gilbreath TM III, Munga S, Nyindo M, Githeko AK, Yan G: Effects of co-habitation between Anopheles gambiae ss and Culex quinquefasciatus aquatic stages on life history traits. Parasit Vectors 2012, 5:33. BioMed Central Full Text
  • [3]Gimnig J, Ombok M, Otieno S, Kaufman M, Vulule J, Walker E: Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 2002, 39(1):162-172.
  • [4]Kaufman M, Walker E, Smith T, Merritt R, Klug M: Effects of larval mosquitoes (Aedes triseriatus) and stemflow on microbial community dynamics in container habitats. Appl Environ Microbiol 1999, 65(6):2661.
  • [5]Walker E, Lawson D, Merritt R, Morgan W, Klug M: Nutrient dynamics, bacterial populations, and mosquito productivity in tree hole ecosystems and microcosms. Ecology 1991, 72(5):1529-1546.
  • [6]Minakawa N, Sonye G, Yan G: Relationships between occurrence of Anopheles gambiae sl (Diptera: Culicidae) and size and stability of larval habitats. J Med Entomol 2005, 42(3):295-300.
  • [7]Bayoh M, Lindsay S: Temperature related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol 2004, 18(2):174-179.
  • [8]Bayoh M, Lindsay S: Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res 2003, 93(05):375-381.
  • [9]Winters AE, Yee DA: Variation in performance of two co-occurring mosquito species across diverse resource environments: insights from nutrient and stable isotope analyses. Ecol Entomol 2012, 37(1):56-64.
  • [10]Gimnig J, Ombok M, Kamau L, Hawley W: Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J Med Entomol 2001, 38(2):282-288.
  • [11]Minakawa N, Mutero C, Githure J, Beier J, Yan G: Spatial distribution and habitat characterization of anopheline mosquito larvae in Western Kenya. Am J Trop Med Hyg 1999, 61(6):1010.
  • [12]Service M: Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary ponds, identification of predators and effects of insecticidal spraying. J Med Entomol 1977, 13:535-545.
  • [13]Sunahara T, Ishizaka K, Mogi M: Habitat size: a factor determining the opportunity for encounters between mosquito larvae and aquatic predators. J Vector Ecol 2002, 27:8-20.
  • [14]Hood Nowotny R, Knols B: Stable isotope methods in biological and ecological studies of arthropods. Entomol Exp Appl 2007, 124(1):3-16.
  • [15]Hood-Nowotny R, Mayr L, Knols BGJ: Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT) context. Malar J 2006, 5(1):6. BioMed Central Full Text
  • [16]Kaufman MG, Pelz-Stelinski KS, Yee DA, Juliano SA, Ostrom PH, Walker ED: Stable isotope analysis reveals detrital resource base sources of the tree hole mosquito, Aedes triseriatus. Ecol Entomol 2010, 35(5):586-593.
  • [17]Edward D, Newton J, Gilburn A: Investigating dietary preferences in two competing dipterans, Coelopa frigida and Coelopa pilipes, using stable isotope ratios of carbon and nitrogen. Entomol Exp Appl 2008, 127(3):169-175.
  • [18]McNeely C, Finlay J, Power M: Grazer traits, competition, and carbon sources to a headwater-stream food web. Ecology 2007, 88(2):391-401.
  • [19]Brito E, Moulton T, De Souza M, Bunn S: Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south east Brazil. Austral Ecol 2006, 31(5):623-633.
  • [20]Post D: Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 2002, 83(3):703-718.
  • [21]Kweka E, Zhou G, Gilbreath T, Afrane Y, Nyindo M, Githeko A, Yan G: Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands. Parasit Vectors 2011, 4(1):128. BioMed Central Full Text
  • [22]McCutchan JH, Lewis WM, Kendall C, McGrath CC: Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 2003, 102(2):378-390.
  • [23]Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J: Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya. PLoS One 2011, 6(9):e24767.
  • [24]Wang W, Pataki DE: Drivers of spatial variability in urban plant and soil isotopic composition in the Los Angeles basin. Plant Soil 2011, 350:323-338.
  • [25]Phillips DL, Gregg JW: Uncertainty in source partitioning using stable isotopes. Oecologia 2001, 127(2):171-179.
  • [26]Merritt R, Craig D, Wotton R, Walker E: Feeding behavior of aquatic insects: case studies on black fly and mosquito larvae. Invertebr Biol 1996, 115(3):206-217.
  • [27]Merritt RW, Dadd RH, Walker ED: Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 1992, 37(1):349-374.
  • [28]Kaufman M, Wanja E, Maknojia S, Bayoh M, Vulule J, Walker E: Importance of algal biomass to growth and development of Anopheles gambiae larvae. J Med Entomol 2006, 43(4):669-676.
  • [29]Wamae P, Githeko A, Menya D, Takken W: Shading by Napier Grass Reduces Malaria Vector Larvae in Natural Habitats in Western Kenya Highlands. Eco Health 2010, 7:485-497.
  • [30]Afrane YA, Githeko AK, Yan G: The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Ann N Y Acad Sci 2012, 1249:204-210.
  • [31]Kumar R, Ramakrishna Rao T: Predation on mosquito larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the presence of alternate prey. Int Rev Hydrobiol 2003, 88(6):570-581.
  • [32]Peterson B, Fry B: Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 1987, 18:293-320.
  • [33]Afrane Y, Zhou G, Lawson B, Githeko A, Yan G: Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg 2006, 74(5):772.
  • [34]Hamer GL, Donovan DJ, Hood-Nowotny R, Kaufman MG, Goldberg TL, Walker ED: Evaluation of a stable isotope method to mark naturally-breeding larval mosquitoes for adult dispersal studies. J Med Entomol 2012, 49(1):61-70.
  • [35]Garros C, Ngugi N, Githeko A, Tuno N, Yan G: Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Mol Ecol Resour 2008, 8(3):512-518.
  • [36]Walker ED, Olds EJ, Merritt RW: Gut content analysis of mosquito larvae (Diptera: Culicidae) using DAPI stain and epifluorescence microscopy. J Med Entomol 1988, 25(6):551-554.
  文献评价指标  
  下载次数:35次 浏览次数:21次