| Particle and Fibre Toxicology | |
| Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania | |
| David Weetman1  Mark Rowland3  Franklin Mosha3  Keith Steen1  Hilary Ranson1  Bilali Kabula2  Christopher M Jones1  Johnson Matowo3  | |
| [1] Liverpool School of Tropical Medicine (LSTM), Liverpool, UK;National Institute for Medical Research (NIMR), Tukuyu, Tanzania;Pan-African Malaria Vector Control Consortium (PAMVERC), Moshi, Tanzania | |
| 关键词: Transcription; Resistance; Permethrin; Microarrays; Genes; Anopheles arabiensis; | |
| Others : 804166 DOI : 10.1186/1756-3305-7-274 |
|
| received in 2014-04-23, accepted in 2014-06-15, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Pyrethroid resistance has been slower to emerge in Anopheles arabiensis than in An. gambiae s.s and An. funestus and, consequently, studies are only just beginning to unravel the genes involved. Permethrin resistance in An. arabiensis in Lower Moshi, Tanzania has been linked to elevated levels of both P450 monooxygenases and β-esterases. We have conducted a gene expression study to identify specific genes linked with metabolic resistance in the Lower Moshi An. arabiensis population.
Methods
Microarray experiments employing an An. gambiae whole genome expression chip were performed on An. arabiensis, using interwoven loop designs. Permethrin-exposed survivors were compared to three separate unexposed mosquitoes from the same or a nearby population. A subsection of detoxification genes were chosen for subsequent quantitative real-time PCR (qRT-PCR).
Results
Microarray analysis revealed significant over expression of 87 probes and under expression of 85 probes (in pairwise comparisons between permethrin survivors and unexposed sympatric and allopatric samples from Dar es Salaam (controls). For qRT-PCR we targeted over expressed ABC transporter genes (ABC ‘2060’), a glutathione-S-transferase, P450s and esterases. Design of efficient, specific primers was successful for ABC ‘2060’and two P450s (CYP6P3, CYP6M2). For the CYP4G16 gene, we used the primers that were previously used in a microarray study of An. arabiensis from Zanzibar islands. Over expression of CYP4G16 and ABC ‘2060’ was detected though with contrasting patterns in pairwise comparisons between survivors and controls. CYP4G16 was only up regulated in survivors, whereas ABC ‘2060’ was similar in survivors and controls but over expressed in Lower Moshi samples compared to the Dar es Salaam samples. Increased transcription of CYP4G16 and ABC ‘2060’ are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis.
Conclusions
Increased transcription of a P450 (CYP4G16) and an ABC transporter (ABC 2060) are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Our study provides replication of CYP4G16 as a candidate gene for pyrethroid resistance in An. arabiensis, although its role may not be in detoxification, and requires further investigation.
【 授权许可】
2014 Matowo et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708054256215.pdf | 822KB | ||
| Figure 4. | 44KB | Image | |
| Figure 3. | 70KB | Image | |
| Figure 2. | 56KB | Image | |
| Figure 1. | 113KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Zaim M, Jambulingam P: Global insecticide use for vector-borne disease control 3rd edition. Geneva: World Health Organization; 2007.
- [2]WHO: World malaria report 2013. Geneva: World Health Organization; 2013.
- [3]Abuelmaali SA, Elaagip AH, Basheer MA, Frah EA, Ahmed FTA, Elhaj HFA, Seidahmed OME, Hamid MMA WD: Impacts of agricultural practices on insecticide resistance in the malaria vector Anopheles arabiensis in Khartoum state, Sudan. PLoS One 2013., 8(12) doi:10.1371/annotation/d40e811c-993d-40ec-8294-420402282448
- [4]Czeher C, Labbo R, Arzika I, Duchemin JB: Evidence of increasing Leu-Phe knock down resistance- mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide treated nets implementation. Malar J 2008, 7:189. BioMed Central Full Text
- [5]Protopopoff N, Verhaegen K, Van Bortel W, Roelants P, Marcotty T, Baza D, D’Alessandro U, Coosemans M: A significant increase in kdr in Anopheles gambiae associated with an intensive vector control intervention in Burundi highlands. Trop Med Int Health 2008, 13:1479-1487.
- [6]Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, Dabiré R, Aïkpon R, Boko M, Glitho I, Akogbeto M: Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasit Vectors 2011, 4:60. BioMed Central Full Text
- [7]Diabate A, Baldet T, Chandre F, Akogbéto M, Guiguemde RT, Darriet F, Brengues C, Guillet P, Hemingway J, Graham JS, Hougard JM: The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l in Burkina Faso. Am J Trop Med Hyg 2002, 67:617-622.
- [8]Ranson H, N'Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 2011, 27(2):91-98.
- [9]Zaim M, Aitio A, Nakashima N: Safety of pyrethroid-treated mosquito nets. Med Vet Entomol 2000, 14:1-5.
- [10]Global Malaria Programme WHO: Global plan on insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization; 2012.
- [11]Coleman M, Hemingway J: Insecticide resistance monitoring and evaluation in disease transmitting mosquitoes. J Pest Sci 2007, 32(2):69-76.
- [12]Hemingway J, Hawkes NJ, McCarroll L, Ranson H: The molecular basis of insecticideresistance in mosquitoes. Insect Biochem Mol Biol 2004, 34(7):653-665.
- [13]Martinez Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 1998, 7(2):179-184.
- [14]Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 2000, 9(5):491-497.
- [15]Ranson H, Rossiter L, Ortelli F, Jensen B, Wang XL, Roth CW, Collins FH, Hemingway J: Identification of a novel class of insect glutathione S-transferases involvedin resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 2001, 359:295-304.
- [16]Gunasekaran K, Muthukumaravel S, Sahu SS, Vijayakumar T, Jambulingam P: Glutathione S-transferase activity in Indian vectors of malaria: A defense mechanism against DDT. J Med Entomol 2011, 48(3):561-569.
- [17]Prapanthadara LA, Ketterman AJ: Qualitative and quantitative changes in glutathioneS-transferases in the mosquito Anopheles gambiae confer DDT-resistance. Biochem Soc Trans 1993, 21(3):304S.
- [18]Vontas JG, Small GJ, Hemingway J: Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 2001, 357:65-72.
- [19]Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E: Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol 2001, 31(4–5):313-319.
- [20]Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, Ismail HM, Hemingway J, Ranson H, Albert A, Wondji CS: A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Gen Biol 2014, 15:R27. BioMed Central Full Text
- [21]Herath PR, Miles SJ, Davidson G: Fenitrothion (OMS 43) resistance in the taxon Anopheles culicifacies Giles. J Trop Med Hyg 1981, 84(2):87-88.
- [22]Hemingway J: The genetics of malathion resistance in Anopheles stephensi from Pakistan. Trans R Soc Trop Med Hyg 1983, 77(1):106-108.
- [23]Feyereisen R, Lawrence IG, Kostas I, Sarjeet SG: Insect Cytochrome P450. In Comprehensive Molecular Insect Science. Amsterdam: Elsevier; 2005:1-77.
- [24]Muller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Stephen A, Yawson E, Mitchell SN, Ranson H, Hemingway J, Paine MJ, Donnelly MJ: Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 2008, 4:el000286.
- [25]Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, Strode C: Expression of the cytochrome P450s,CYF6P3 and CYF6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiaes.s. from Southern Benin and Nigeria. BMC Genomics 2008, 9:538. BioMed Central Full Text
- [26]Muller P, Donnelly MJ, Ranson H: Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics 2007, 8:3626.
- [27]Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O'Neill PM, Lian LY, Muller P, Nikou D, Steven A, Hemingway J, Sutcliff MJ, Paine MJ: Cytochrome P450 6 M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 2011, 41(7):492-502.
- [28]Muller P, Chouaibou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, Simard F, Ranson H: Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol Ecol 2008, 17(4):1145-1155.
- [29]Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG, Hemingway J, Paine MJ, Ranson H, Donnelly MJ: Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci U S A 2012, 109(16):6147-6152.
- [30]Gillies MT, Coetzee M: A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Johannesburg S Afr Inst Med Res 1987, 55:1-143.
- [31]Coetzee M, Crag M, Le Sueur D: Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today 2000, 16:74-77.
- [32]Minakawa N, Sonye G, Mogi M, Githeko A, Yan G: The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya. J Med Entomol 2002, 39:833-841.
- [33]Verhaeghen K, Bortel WV, Roelants P, Backeljau T, Coosemans M: Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Malar J 2006, 5:16. BioMed Central Full Text
- [34]Himeidan YE, Chen H, Chandre F, Donnelly MJ: Short report: permethrin and DDT resistance in the malaria vector Anopheles arabiensis from eastern Sudan. Am J Trop Med Hyg 2007, 77:1066-1068.
- [35]Abdalla H, Matambo TS, Koekemoer LL, Mnzava AP, Hunt RH, Coetzee M: Insecticide susceptibility and vector status of natural populations of Anopheles arabiensis from Sudan. Trans R Soc Trop Med Hyg 2008, 102:263-271.
- [36]Ndjemaï HNM, Patchoké S, Atangana J, Etang J, Simard F, Bilong Bilong CF, Reimer L, Cornel A, Lanzaro CG, Fondjo E: The distribution of insecticide resistance in Anopheles gambiae s.l populations from Cameroon: an update. Trans R Soc Trop Med Hyg 2008, 103(11):1127-1138.
- [37]Kulkarni MA, Rowland M, Alifrangis M, Mosha FW, Matowo J, Malima R, Justin P, Kweka E, Lyimo I, Magesa S, Salanti A, Rau ME, Drakeley C: Occurrence of leucine to phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations Tanzania detected by a high throughput SSOP-ELISA method. Malar J 2006, 5:56. BioMed Central Full Text
- [38]Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, West P, Kisinza W, Mosha FW, Kleinschmidt I, Rowland M: High level of resistance to pyrethroids and DDT and reduced susceptibility to bendiocarb in malaria vector Anopheles gambiae in North Western Tanzania. Malar J 2013, 12:149. BioMed Central Full Text
- [39]Matowo J, Kitau J, Kabula B, Oxborough RM, Mosha FW, Rowland M: Dynamics of pyrethroid resistance and the frequency of kdr mutation in Anopheles arabiensis in rural villages of Lower Moshi, North-Eastern Tanzania. J Parasitol Vector Biol 2014, 6(3):31-41.
- [40]Jones CM, Haji KA, Khatib BO, Bagi J, Mcha J, Devine GJ, Daley M, Kabula B, Ali AS, Majambere S, Ranson H: The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasite Vectors 2013, 6:343. BioMed Central Full Text
- [41]Nardini L, Christian RN, Coetzer N, Ranson H, Coetzee M, Koekemoer LL: Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin. Parasite Vectors 2012, 5:113. BioMed Central Full Text
- [42]Mouatcho JC, Munhenga G, Hargreaves K, Brooke BD, Coetzee M, Koekemoer LL: Pyrethroid resistance in a major African malaria vector Anopheles arabiensis from Mamfene, northern KwaZulu-Natal, South Africa. S Afr J Sci 2009, 105:127-131.
- [43]Universal Coverage Campaign - Final Impact. 2011. http://medatanzania.org/?%20p?=?ucc_final webcite
- [44]Matowo J, Kulkarni MA, Mosha FW, Oxborough R, Kitau J, Tenu F, Rowland M: Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar J 2010, 9:193. BioMed Central Full Text
- [45]Nkya TE, Akhouayri I, Kisinza W, David JP: Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol 2013, 43:407-416.
- [46]Rogers DW, Whitten MMA, Thailayil J, Soichot J, Levashina EA, Catteruccia F: Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc Natl Acad Sci U S A 2008, 105(49):19390-19395.
- [47]WHO: Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013.
- [48]Scott JA, Brogdon WG, Collins FH: Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 1993, 49:520-529.
- [49]Smyth GK L: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and BIOCONDUCTOR. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397-420.
- [50]Wu H, Kerr M, Cui X, Churchill G: MAANOVA: A Software Package for the Analysisof Spotted cDNA Microarray Experiments. In The Analysis of Gene Expression Data. Edited by Parmigiani G, Garrett E, Irizarry R, Zeger S. London: Springer; 2003:313-341.
- [51]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 2008, 3:1101-1108.
- [52]Witzig C, Parry M, Morgan JC, Irving H, Steven A, Cuamba N, Kerah-Hinzoumbé C, Ranson H, Wondji CS: Genetic mapping identifies a major locus spanning P450 clusters associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad. Heredity 2013, 110:389-397.
- [53]Christian RN, Strode C, Ranson H, Coetzer N, Coetzee M, Koekemoer L: Microarray analysis of a pyrethroid resistant African malaria vector, Anopheles funestus, from Southern Africa. Pestic Biochem Physiol 2011, 99:140-147.
- [54]Vontas J, David J-P, Nikou D, Hemingway J, Christophides GK, Louis C, Ranson H: Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Mol Biol 2007, 16:315-324.
- [55]Baker D, Nolan T, Fischer B, Pinder A, Crisanti A, Russell S: A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae. BMC Genomics 2011, 12(1):296. BioMed Central Full Text
- [56]Aurade RM, Jayalakshmi SK, Sreeramulu K: P-glycoprotein ATPase from the resistantpest, Helicoverpa armigera: purification, characterization and effect of various insecticides on its transport function. Biochim Biophys Acta 2010, 1798:1135-1143.
- [57]Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H: Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector. Aedes aegypti PLoS Negl Trop Dis 2012, 6(6):e1692. doi:10.1371/journal.pntd.0001692
- [58]Porretta D, Gargani M, Bellini R, Medici A, Punelli F, Urbanelli S: Defence mechanisms against insecticides temephos and diflubenzuron in the mosquito Aedes caspius: the P-glycoprotein efflux pumps. Med Vet Entomol 2008, 22:48-54.
- [59]Buss DS, McCaffery AR, Callaghan A: Evidence for p-glycoprotein modification of insecticide toxicity in mosquitoes of the Culex pipiens complex. Med Vet Entomol 2002, 16:218-222.
- [60]Roth CW, Holm I, Graille M, Dehoux P, Rzhetsky A, Wincker P, Weissenbach J, Brey PT: Identification of the Anopheles gambiae ATP-binding cassette transporter superfamily genes. Mol Cells 2003, 15:150-158.
- [61]Gahan LJ, Pauchet Y, Vogel H, Heckel DG: An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 2010, 6:e1001248.
- [62]Broehan G, Kroeger T, Lorenzen M, Merzendorfer H: Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Gen 2013, 14:6.
- [63]Higgins CF, Linton KJ: The ATP switch model for ABC transporters. Nat Struct Mol Biol 2004, 11:918-926.
- [64]Linton KJ, Higgins CF: Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 2007, 453:555-567.
- [65]George AM, Jones PM: Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact Models. Prog Biophys Mol Biol 2012, 109:95-107.
- [66]Wood OR, Hanrahan S, Coetzee M, Koekemoer LL, Brooke DB: Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasite Vectors 2010, 3:67. BioMed Central Full Text
PDF