期刊论文详细信息
Retrovirology
Structural basis of genomic RNA (gRNA) dimerization and packaging determinants of mouse mammary tumor virus (MMTV)
Tahir A Rizvi2  Roland Marquet3  Farah Mustafa1  Delphine Richer3  Rawan M Kalloush2  Ayesha Jabeen2  Lizna M Ali2  Valérie Vivet-Boudou3  Suriya J Aktar2 
[1] Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates;Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates;Architecture et Réactivité de l’ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, Strasbourg cedex, 67084, France
关键词: Long-range interaction (LRI);    RNA packaging signal;    RNA intermolecular interactions;    Dimerization Initiation Site (DIS);    palindromic (pal) sequence;    RNA packaging;    RNA dimerization;    Mouse mammary tumor virus (MMTV);   
Others  :  1151998
DOI  :  10.1186/s12977-014-0096-6
 received in 2014-05-08, accepted in 2014-10-23,  发布年份 2014
PDF
【 摘 要 】

Background

One of the hallmarks of retroviral life cycle is the efficient and specific packaging of two copies of retroviral gRNA in the form of a non-covalent RNA dimer by the assembling virions. It is becoming increasingly clear that the process of dimerization is closely linked with gRNA packaging, and in some retroviruses, the latter depends on the former. Earlier mutational analysis of the 5’ end of the MMTV genome indicated that MMTV gRNA packaging determinants comprise sequences both within the 5’ untranslated region (5’ UTR) and the beginning of gag.

Results

The RNA secondary structure of MMTV gRNA packaging sequences was elucidated employing selective 2’hydroxyl acylation analyzed by primer extension (SHAPE). SHAPE analyses revealed the presence of a U5/Gag long-range interaction (U5/Gag LRI), not predicted by minimum free-energy structure predictions that potentially stabilizes the global structure of this region. Structure conservation along with base-pair covariations between different strains of MMTV further supported the SHAPE-validated model. The 5’ region of the MMTV gRNA contains multiple palindromic (pal) sequences that could initiate intermolecular interaction during RNA dimerization. In vitro RNA dimerization, SHAPE analysis, and structure prediction approaches on a series of pal mutants revealed that MMTV RNA utilizes a palindromic point of contact to initiate intermolecular interactions between two gRNAs, leading to dimerization. This contact point resides within pal II (5’ CGGCCG 3’) at the 5’ UTR and contains a canonical “GC” dyad and therefore likely constitutes the MMTV RNA dimerization initiation site (DIS). Further analyses of these pal mutants employing in vivo genetic approaches indicate that pal II, as well as pal sequences located in the primer binding site (PBS) are both required for efficient MMTV gRNA packaging.

Conclusions

Employing structural prediction, biochemical, and genetic approaches, we show that pal II functions as a primary point of contact between two MMTV RNAs, leading to gRNA dimerization and its subsequent encapsidation into the assembling virus particles. The results presented here enhance our understanding of the MMTV gRNA dimerization and packaging processes and the role of structural motifs with respect to RNA-RNA and possibly RNA-protein interactions that might be taking place during MMTV life cycle.

【 授权许可】

   
2014 Aktar et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406124414809.pdf 3991KB PDF download
Figure 10. 90KB Image download
Figure 9. 117KB Image download
Figure 8. 38KB Image download
Figure 7. 72KB Image download
Figure 6. 133KB Image download
Figure 5. 77KB Image download
Figure 4. 39KB Image download
Figure 3. 95KB Image download
Figure 2. 84KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]D’Souza V, Summers MF: How retroviruses select their genomes. Nat Rev Microbiol 2005, 8:643-655.
  • [2]Johnson SF, Telesnitsky A: Retroviral RNA dimerization and packaging: the what, how, when, where, and why.PLoS Pathog 2010, 6:e1001007.
  • [3]Lever AML: HIV RNA packaging. Adv Pharmacol 2007, 55:1-32.
  • [4]Lu K, Heng X, Garyu L, Monti S, Garcia EL, Kharytonchyk S, Dorjsuren B, Kulandaivel G, Jones S, Hiremath A, Divakaruni SS, LaCotti C, Barton S, Tummillo D, Hosic A, Edme K, Albrecht S, Telesnitsky A, Summers MF: NMR detection of structures in the HIV-1 5’-leader RNA that regulate genome packaging. Science 2011, 334:242-245.
  • [5]Paillart JC, Shehu-Xhilaga M, Marquet R, Mak J: Dimerization of retroviral RNA genomes: An inseparable pair. Nat Rev Microbiol 2004, 2:461-472.
  • [6]Russell RS, Liang C, Wainberg MA: Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably?Retrovirology 2004, 1:23.
  • [7]Abd El-Wahab EW, Smyth RP, Mailler E, Bernacchi S, Vivet-Boudou V, Hijnen M, Jossinet F, Mak J, Paillart JC, Marquet R: Specific recognition of the HIV-1 genomic RNA by the Gag precursor.Nat Commun 2014, 5:4304. doi:10.1038/ncomms5304.
  • [8]Jaballah SA, Aktar SJ, Ali J, Phillip PS, Al Dhaheri NS, Jabeen A, Rizvi TA: A G-C rich palindromic structural motif and a stretch of single stranded purines are required for optimal packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA. J Mol Biol 2010, 401:996-1014.
  • [9]Mustafa F, Ghazawi A, Jayanth P, Phillip PS, Ali J, Rizvi TA: Sequences intervening between the core packaging determinants are dispensable for maintaining the packaging potential and propagation of feline immunodeficiency virus transfer vector RNAs. J Virol 2005, 79:13817-13821.
  • [10]Mustafa F, Al Amri D, Al Ali F, Al Sari N, Al Suwaidi S, Jayanth P, Philips PS, Rizvi TA: Sequences within both the 5’ UTR and Gag are required for optimal in vivo packaging and propagation of mouse mammary tumor virus (MMTV) genomic RNA.PLoS One 2012, 7:e47088.
  • [11]Moore MD, Hu WS: HIV-1 RNA dimerization: It takes two to tango. AIDS Rev 2009, 11:91-102.
  • [12]Al Dhaheri NS, Phillip PS, Ghazawi A, Ali J, Beebi E, Jaballah SA, Rizvi TA: Cross-packaging of genetically distinct mouse and primate retroviral RNAs.Retrovirology 2009, 6:66.
  • [13]Al Shamsi IR, Al Dhaheri NS, Phillip PS, Mustafa F, Rizvi TA: Reciprocal cross-packaging of primate lentiviral (HIV-1 and SIV) RNAs by heterologous non-lentiviral MPMV proteins. Virus Res 2011, 155:352-357.
  • [14]Motomura K, Chen J, Hu WS: Genetic recombination between human immunodeficiency virus type 1 (HIV-1) and HIV-2, two distinct human lentiviruses. J Virol 2008, 82:1923-1933.
  • [15]Moore MD, Fu W, Nikolaitchik O, Chen J, Ptak RG, Hu WS: Dimer initiation signal of human immunodeficiency virus type 1: its role in partner selection during RNA copackaging and its effects on recombination. J Virol 2007, 81:4002-4011.
  • [16]Parveen Z, Mukhtar M, Goodrich A, Acheampong E, Dornburg R, Pomerantz RJ: Cross-packaging of human immunodeficiency virus type 1 vector RNA by spleen necrosis virus proteins: construction of a new generation of spleen necrosis virus-derived retroviral vectors. J Virol 2004, 78:6480-6488.
  • [17]Rizvi TA, Panganiban AT: Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles. J Virol 1993, 67:2681-2688.
  • [18]White SM, Renda M, Nam NY, Klimatcheva E, Zhu Y, Fisk J, Halterman M, Rimel BJ, Federoff H, Pandya S, Rosenblatt JD, Planelles V: Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 1999, 73:2832-2840.
  • [19]Yin PD, Hu WS: RNAs from genetically distinct retroviruses can copackage and exchange genetic information in vivo. J Virol 1997, 71:6237-6242.
  • [20]Miyazaki Y, Miyake A, Nomaguchi M, Adachi A: Structural dynamics of retroviral genome and the packaging. Frontiers in Microbiology 2011, 2:1-9.
  • [21]Aktar SJ, Jabeen A, Ali LM, Vivet-Boudou V, Marquet R, Rizvi TA: SHAPE analysis of the 5’ end of the Mason-Pfizer monkey virus (MPMV) genomic RNA reveals structural elements required for genome dimerization. RNA 2013, 19:1648-1658.
  • [22]Clever JL, Wong ML, Parslow TG: Requirements for kissing-loop-mediated dimerization of human immunodeficiency virus RNA. J Virol 1996, 70:5902-5908.
  • [23]Kenyon JC, Tanner S, Legiewicz M, Phillip PS, Rizvi TA, LeGrice S, Lever AM: SHAPE analysis of the FIV leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization. Nucleic Acids Res 2011, 39:6692-6704.
  • [24]Paillart JC, Marquet R, Skripkin E, Ehresmann B, Ehresmann C: Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. J Biol Chem 1994, 269:27486-27493.
  • [25]Paillart JC, Berthoux L, Ottmann M, Darlix JL, Marquet R, Ehresmann B, Ehresmann C: A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. J Virol 1996, 70:8348-8354.
  • [26]Paillart JC, Westhof E, Ehresmann C, Ehresmann B, Marquet R: Non-canonical interactions in a kissing loop complex: the dimerization initiation site of HIV-1 genomic RNA. J Mol Biol 1997, 270:36-49.
  • [27]Hussein ITM, Ni N, Galli A, Chen J, Moore MD, Hu WS: Delineation of the preferences and requirements of the human immunodeficiency virus type 1 dimerization initiation signal by using an in vivo cell-based selection approach. J Virol 2010, 84:6866-6875.
  • [28]Baig TT, Lanchy JM, Lodmell JS: HIV-2 RNA dimerization is regulated by intramolecular interactions in vitro. RNA 2007, 8:1341-1354.
  • [29]Berkhout B, van Wamel JL: Role of the DIS hairpin in replication of human immunodeficiency virus type 1. J Virol 1996, 70:6723-6732.
  • [30]Lanchy JM, Ivanovitch JD, Lodmell JS: A structural linkage between the dimerization and encapsidation signals in HIV-2 leader RNA. RNA 2003, 9:1007-1018.
  • [31]Lanchy JM, Lodmell JS: An extended stem-loop 1 is necessary for human immunodeficiency virus type 2 replication and affects genomic RNA encapsidation. J Virol 2007, 7:3285-3292.
  • [32]Laughrea M, Jetté L, Mak J, Kleiman L, Liang C, Wainberg MA: Mutations in the kissing-loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. J Virol 1997, 71:3397-3406.
  • [33]Rizvi TA, Kenyon JC, Ali J, Aktar SJ, Phillip PS, Ghazawi A, Mustafa F, Lever AML: Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag. J Mol Biol 2010, 403:103-119.
  • [34]Polge E, Darlix JL, Paoletti J, Fossé P: Characterization of loose and tight dimer forms of avian leukosis virus RNA. J Mol Biol 2000, 300:41-56.
  • [35]Houzet L, Paillart JC, Smagulova F, Maurel S, Morichaud Z, Marquet R, Mougel M: HIV controls the selective packaging of genomic, spliced viral and cellular RNAs into virions through different mechanisms. Nucleic Acids Res 2007, 35:2695-2704.
  • [36]Shen N, Jette L, Liang C, Wainberg MA, Laughrea M: Impact of human immunodeficiency virus type 1 RNA dimerization on viral infectivity and of stem-loop B on RNA dimerization and reverse transcription and dissociation of dimerization from packaging. J Virol 2000, 74:5729-5735.
  • [37]Andersen ES, Jeeninga RE, Damgaard CK, Berkhout B, Kjems J: Dimerization and template switching in the 5’ untranslated region between various subtypes of human immunodeficiency virus type 1. J Virol 2003, 77:3020-3030.
  • [38]Balakrishnan M, Fay PJ, Bambara RA: The kissing hairpin sequence promotes recombination within the HIV-I 5’ leader region. J Biol Chem 2001, 276:36482-36492.
  • [39]Chin MP, Rhodes TD, Chen J, Fu W, Hu WS: Identification of a major restriction in HIV-1 intersubtype recombination. Proc Natl Acad Sci 2005, 102:9002-9007.
  • [40]Ennifar E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C, Dumas P, Walter P: HIV-1 RNA dimerization initiation site is structurally similar to the ribosomal A site and binds aminoglycoside antibiotics. J Biol Chem 2003, 278:2723-2730.
  • [41]Ennifar E, Paillart JC, Bodlenner A, Walter P, Weibel JM, Aubertin AM, Pale P, Dumas P, Marquet R: Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: from crystal to cell. Nucleic Acids Res 2006, 34:2328-2339.
  • [42]Cardiff RD, Kenney N: Mouse Mammary Tumor Biology: A Short History. Adv Cancer Res 2007, 98:53-116.
  • [43]Ross SR: Mouse mammary tumor virus molecular biology and oncogenesis. Viruses 2010, 2:2000-2012.
  • [44]Salmons B, Moritz-Legrand S, Garcha I, Günzburg WH: Construction and characterization of a packaging cell line for MMTV-based conditional retroviral vectors. Biochem Biophys Res Commun 1989, 159:1191-1198.
  • [45]Rizvi TA, Ali J, Phillip PS, Ghazawi A, Jayanth P, Mustafa F: Role of a heterologous retroviral transport element in the development of genetic complementation assay for mouse mammary tumor virus (MMTV) replication. Virology 2009, 385:464-472.
  • [46]Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM: RNA structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 2005, 127:4223-4231.
  • [47]Mortimer SA, Weeks KM: A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 2007, 129:4144-4145.
  • [48]Mortimer SA, Weeks KM: Time-resolved RNA SHAPE chemistry: quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution. Nat Protoc 2009, 4:1413-1421.
  • [49]Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC: ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 2008, 14:1979-1990.
  • [50]Laughrea M, Jetté L: Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248-271 are dispensable for dimer formation. Biochemistry 1996, 35:1589-1598.
  • [51]Mikkelsen JG, Lund AH, Kristensen KD, Duch M, Sørensen MS, Jørgensen P, Pedersen FS: A preferred region for recombinational patch repair in the 5’ untranslated region of primer binding site-impaired murine leukemia virus vectors. J Virol 1996, 70:1439-1447.
  • [52]Oh J, McWilliams MJ, Julias JG, Stephen Hughes H: Mutations in the U5 region adjacent to the primer binding site affect tRNA cleavage by human immunodeficiency virus type 1 reverse transcriptase in vivo. J Virol 2008, 82:719-727.
  • [53]Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE, Coffin JM, Ni N, Lockett S, Pathak VK, Hu WS: High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci U S A 2009, 106:13535-13540.
  • [54]Jossinet F, Lodmell JS, Ehresmann C, Ehresmann B, Marquet R: Identification of the in vitro HIV-2/SIV RNA dimerization site reveals striking differences with HIV-1. J Biol Chem 2001, 276:5598-5604.
  • [55]Paillart JC, Skripkin E, Ehresmann B, Ehresmann C, Marquet R: A loop-loop “kissing” complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc Natl Acad Sci U S A 1996, 93:5572-5577.
  • [56]Kenyon JC, Ghazawi A, Cheung WK, Phillip PS, Rizvi TA, Lever AM: The secondary structure of the 5’ end of the FIV genome reveals a long-range interaction between R/U5 and gag sequence, and a large, stable stem loop.RNA 2008, 14:2597.
  • [57]Paillart JC, Skripkin E, Ehresmann B, Ehresmann C, Marquet R: In vitro evidence for a long range pseudoknot in the 5’-untranslated and matrix coding regions of HIV-1 genomic RNA. J Biol Chem 2002, 277:5995-6004.
  • [58]Song R, Kafaie J, Laughrea M: Role of the 5’ TAR stem-loop and the U5-AUG duplex in dimerization of HIV-1 genomic RNA. Biochemistry 2008, 47:3283-3293.
  • [59]Spriggs S, Garyu L, Connor R, Summers MF: Potential intra- and intermolecular interactions involving the unique 5’ region of the HIV-1 5’ UTR. Biochemistry 2008, 47:13064-13073.
  • [60]Baudin F, Marquet R, Isel C, Darlix JL, Ehresmann B, Ehresmann C: Functional sites in the 5’ region of human immunodeficiency virus type 1 RNA form defined structural domains. J Mol Biol 1993, 229:382-397.
  • [61]Lever AML: RNA packaging in lentiviruses.Retrovirology 2009, 6:113.
  • [62]Zeffman A, Hassard S, Varani G, Lever A: The major HIV-1 packaging signal is an extended bulged stem loop whose structure is altered on interaction with the Gag polyprotein. J Mol Biol 2000, 297:877-893.
  • [63]Nikolaitchik OA, Dilley KA, Fu W, Gorelick RJ, Tai SH, Soheilian F, Ptak RG, Nagashima K, Pathak VK, Hu WS: Dimeric RNA recognition regulates HIV-1 genome packaging.PLoS Pathog 2013, 9:e1003249.
  • [64]Leitner T, Foley B, Hahn B, Marx P, McCutchan F, Mellors J, Wolinsky S, Korber B (Eds): HIV Sequence Compendium 2005. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, LA-UR 06-0680; 2005.
  • [65]Skripkin E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C: Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci U S A 1994, 91:4945-4949.
  • [66]Gavazzi C, Yver M, Isel C, Smyth RP, Rosa-Calatrava M, Lina B, Moulès V, Marquet R: A functional sequence-specific interaction between influenza A virus genomic RNA segments. Proc Natl Acad SciUSA 2013, 110:16604-16609.
  • [67]Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999, 288:911-940.
  • [68]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31:3406-3415.
  • [69]Reuter JS, Mathews DH: RNA structure: software for RNA secondary structure prediction and analysis.BMC Bioinformatics 2010, 11:129.
  • [70]Shackleford GM, Varmus HE: Construction of a clonable, infectious, and tumorigenic mouse mammary tumor virus provirus and a derivative genetic vector. Proc Natl Acad Sci 1988, 85:9655-9659.
  • [71]Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R: A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010, 38(Web Server issue):W695-W699. doi:10.1093/nar/gkq313. Epub 2010 May 3
  • [72]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.Mol Syst Biol 2011, 7:539. doi:10.1038/msb.2011.75.
  • [73]Hofacker IL, Fekete M, Stadler PF: Secondary Structure Prediction for Aligned RNA Sequences. J Mol Biol 2002, 319:1059-1066.
  • [74]Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF: RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 2008, 9:1471-2105. BioMed Central Full Text
  • [75]Hook LM, Agafonova Y, Ross SR, Turner SJ, Golovkina TV: Genetics of mouse mammary tumor virus-induced mammary tumors: linkage of tumor induction to the gag gene. J Virol 2000, 74:8876-8883.
  • [76]Cho K, Ferrick DA, Morris DW: Structure and biological activity of the subgenomic Mtv-6 endogenous provirus. Virology 1995, 206:395-402.
  • [77]Petropoulos CJ: Retroviral taxonomy, protein structure, sequences, and genetic maps. In Retroviruses. Edited by Coffin JM. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1997:757.
  • [78]Moore R, Dixon M, Smith R, Peters G, Dickson C: Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J Virol 1987, 61:480-490.
  • [79]Fasel N, Buetti E, Firzlaff J, Pearson K, Diggelmann H: Nucleotide sequence of the 5’ noncoding region and part of the gag gene of mouse mammary tumor virus; identification of the 5’ splicing site for subgenomic mRNAs. Nucleic Acids Res 1983, 11:6943-6955.
  • [80]Marsh JL, Erfle M, Wykes EJ: The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene 1984, 32:481-485.
  • [81]Gibbs JS, Regier DA, Desrosiers RC: Construction and in vitro properties of SIV mac mutants with deletions in “nonessential” genes. AIDS Res Hum Retrovirus 1994, 10:607-616.
  • [82]Marquet R, Baudin F, Gabus C, Darlix JL, Mougel M, Ehresmann C, Ehresmann B: Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Res 1991, 9:2349-2357.
  • [83]Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, Giddings MC, Weeks KM: High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.PLoS Biol 2008, 6:e96. doi:10.1371/journal.pbio.0060096.
  • [84]Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996, 272:263-267.
  • [85]Ghazawi A, Mustafa F, Phillip PS, Jayanth P, Ali J, Rizvi TA: Both the 5’ and 3’ LTRs of FIV contain minor RNA encapsidation determinants compared to the two core packaging determinants within the 5’ untranslated region and gag. Microbes Infect 2006, 8:767-778.
  文献评价指标  
  下载次数:140次 浏览次数:26次