期刊论文详细信息
Molecular Neurodegeneration
Hippocampal neuronal cells that accumulate α-synuclein fragments are more vulnerable to Aβ oligomer toxicity via mGluR5 – implications for dementia with Lewy bodies
Eliezer Masliah1  Paula Desplats2  Christina Patrick2  Diana L Price3  Brian Spencer2  Kiren Ubhi2  Edward Rockenstein2  Gideon Shaked2  Anna Cartier2  Cassia R Overk2 
[1] Department of Pathology, University of California, San Diego, La Jolla, CA, USA;Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA;Neuropore Therapies, Inc., San Diego, CA 92121, USA
关键词: Transgenic animal model;    Parkinsonism;    mGluR5;    Human;    Hippocampus;    Dementia with Lewy body;    Amyloid β oligomer;    α-synuclein;   
Others  :  861513
DOI  :  10.1186/1750-1326-9-18
 received in 2014-03-12, accepted in 2014-05-13,  发布年份 2014
PDF
【 摘 要 】

Background

In dementia with Lewy bodies (DLB) abnormal interactions between α-synuclein (α-syn) and beta amyloid (Aβ) result in selective degeneration of neurons in the neocortex, limbic system and striatum. However, factors rendering these neurons selectively vulnerable have not been fully investigated. The metabotropic glutamate receptor 5 (mGluR5) has been shown to be up regulated in DLB and might play a role as a mediator of the neurotoxic effects of Aβ and α-syn in vulnerable neuronal populations. In this context, the main objective of the present study was to investigate the role of mGluR5 as a mediator of the neurotoxic effects of α-syn and Aβ in the hippocampus.

Results

We generated double transgenic mice over-expressing amyloid precursor protein (APP) and α-syn under the mThy1 cassette and investigated the relationship between α-syn cleavage, Aβ, mGluR5 and neurodegeneration in the hippocampus. We found that compared to the single tg mice, the α-syn/APP tg mice displayed greater accumulation of α-syn and mGluR5 in the CA3 region of the hippocampus compared to the CA1 and other regions. This was accompanied by loss of CA3 (but not CA1) neurons in the single and α-syn/APP tg mice and greater loss of MAP 2 and synaptophysin in the CA3 in the α-syn/APP tg. mGluR5 gene transfer using a lentiviral vector into the hippocampus CA1 region resulted in greater α-syn accumulation and neurodegeneration in the single and α-syn/APP tg mice. In contrast, silencing mGluR5 with a lenti-shRNA protected neurons in the CA3 region of tg mice. In vitro, greater toxicity was observed in primary hippocampal neuronal cultures treated with Aβ oligomers and over-expressing α-syn; this effect was attenuated by down-regulating mGluR5 with an shRNA lentiviral vector. In α-syn-expressing neuronal cells lines, Aβ oligomers promoted increased intracellular calcium levels, calpain activation and α-syn cleavage resulting in caspase-3-dependent cell death. Treatment with pharmacological mGluR5 inhibitors such as 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) attenuated the toxic effects of Aβ in α-syn-expressing neuronal cells.

Conclusions

Together, these results support the possibility that vulnerability of hippocampal neurons to α-syn and Aβ might be mediated via mGluR5. Moreover, therapeutical interventions targeting mGluR5 might have a role in DLB.

【 授权许可】

   
2014 Overk et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725001849279.pdf 4116KB PDF download
111KB Image download
73KB Image download
90KB Image download
119KB Image download
86KB Image download
90KB Image download
98KB Image download
101KB Image download
Figure 4. 32KB Image download
92KB Image download
87KB Image download
【 图 表 】

Figure 4.

【 参考文献 】
  • [1]As A: Alzheimer’s disease facts and figures. Alzheimer’s Dementia 2013, 2013(9):1-71.
  • [2]Masters CL, Selkoe DJ: Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012, 2:a006262.
  • [3]Mucke L, Selkoe DJ: Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2012, 2:a006338.
  • [4]Trojanowski J, Goedert M, Iwatsubo T, Lee V: Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and lewy body dementia. Cell Death Differ 1998, 5:832-837.
  • [5]Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M: Alpha-synuclein in Lewy bodies. Nature 1997, 388:839-840.
  • [6]Hashimoto M, Hernandez-Ruiz S, Hsu L, Sisk A, Xia Y, Takeda A, Sundsmo M, Masliah E: Human recombinant NACP/a-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 1998, 799:301-306.
  • [7]Lippa CF, Duda JE, Grossman M, Hurtig HI, Aarsland D, Boeve BF, Brooks DJ, Dickson DW, Dubois B, Emre M, Fahn S, Farmer JM, Galasko D, Galvin JE, Goetz CG, Growdon JH, Gwinn-Hardy KA, Hardy J, Heutink P, Iwatsubo T, Kosaka K, Lee VM, Leverenz JB, Masliah E, McKeith IG, Nussbaum RL, Olanow CW, Ravina BM, Singleton AB, Tanner CM, et al.: DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 2007, 68:812-819.
  • [8]McKeith IG: Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis 2006, 9:417-423.
  • [9]Pletnikova O, West N, Lee MK, Rudow GL, Skolasky RL, Dawson TM, Marsh L, Troncoso JC: Abeta deposition is associated with enhanced cortical alpha-synuclein lesions in Lewy body diseases. Neurobiol Aging 2005, 26:1183-1192.
  • [10]Lippa CF, Fujiwara H, Mann DM, Giasson B, Baba M, Schmidt ML, Nee LE, O’Connell B, Pollen DA, St George-Hyslop P, Ghetti B, Nochlin D, Bird TD, Cairns NJ, Lee VM, Iwatsubo T, Trojanowski JQ: Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 1998, 153:1365-1370.
  • [11]Morales R, Moreno-Gonzalez I, Soto C: Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases. PLoS Pathog 2013, 9:e1003537.
  • [12]Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L: beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci U S A 2001, 98:12245-12250.
  • [13]Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H, Spencer B, Rockenstein E, Trejo M, Platoshyn O, Yuan JX, Masliah E: Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 2008, 3:e3135.
  • [14]Mandal PK, Pettegrew JW, Masliah E, Hamilton RL, Mandal R: Interaction between Abeta peptide and alpha synuclein: molecular mechanisms in overlapping pathology of Alzheimer’s and Parkinson’s in dementia with Lewy body disease. Neurochem Res 2006, 31:1153-1162.
  • [15]Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM: Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 2010, 30:7281-7289.
  • [16]Hamilton RL: Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol 2000, 10:378-384.
  • [17]Zaja-Milatovic S, Keene CD, Montine KS, Leverenz JB, Tsuang D, Montine TJ: Selective dendritic degeneration of medium spiny neurons in dementia with Lewy bodies. Neurology 2006, 66:1591-1593.
  • [18]Harding AJ, Lakay B, Halliday GM: Selective hippocampal neuron loss in dementia with Lewy bodies. Ann Neurol 2002, 51:125-128.
  • [19]Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D, Cartier A, Spencer B, Patrick C, Desplats P, Ellisman MH, Masliah E: Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy--implications for excitotoxicity. PLoS One 2010, 5:e14020.
  • [20]Caraci F, Battaglia G, Sortino MA, Spampinato S, Molinaro G, Copani A, Nicoletti F, Bruno V: Metabotropic glutamate receptors in neurodegeneration/neuroprotection: still a hot topic? Neurochem Int 2012, 61:559-565.
  • [21]Lee HG, Zhu X, O’Neill MJ, Webber K, Casadesus G, Marlatt M, Raina AK, Perry G, Smith MA: The role of metabotropic glutamate receptors in Alzheimer’s disease. Acta Neurobiol Exp (Wars) 2004, 64:89-98.
  • [22]Marino MJ, Valenti O, Conn PJ: Glutamate receptors and Parkinson’s disease: opportunities for intervention. Drugs Aging 2003, 20:377-397.
  • [23]Feeley Kearney JA, Albin RL: mGluRs: a target for pharmacotherapy in Parkinson disease. Exp Neurol 2003, 184(Suppl 1):S30-S36.
  • [24]Naie K, Manahan-Vaughan D: Regulation by metabotropic glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: relevance for learning and memory formation. Cereb Cortex 2004, 14:189-198.
  • [25]Simonyi A, Schachtman TR, Christoffersen GR: The role of metabotropic glutamate receptor 5 in learning and memory processes. Drug News Perspect 2005, 18:353-361.
  • [26]Romano C, Sesma MA, McDonald CT, O’Malley K, Van den Pol AN, Olney JW: Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol 1995, 355:455-469.
  • [27]Marino MJ, Awad H, Poisik O, Wittmann M, Conn PJ: Localization and physiological roles of metabotropic glutamate receptors in the direct and indirect pathways of the basal ganglia. Amino Acids 2002, 23:185-191.
  • [28]Conn PJ, Battaglia G, Marino MJ, Nicoletti F: Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 2005, 6:787-798.
  • [29]Albasanz JL, Dalfo E, Ferrer I, Martin M: Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis 2005, 20:685-693.
  • [30]Tyszkiewicz JP, Yan Z: beta-Amyloid peptides impair PKC-dependent functions of metabotropic glutamate receptors in prefrontal cortical neurons. J Neurophysiol 2005, 93:3102-3111.
  • [31]Oka A, Takashima S: The up-regulation of metabotropic glutamate receptor 5 (mGluR5) in Down’s syndrome brains. Acta Neuropathol (Berl) 1999, 97:275-278.
  • [32]Battaglia G, Busceti CL, Molinaro G, Biagioni F, Storto M, Fornai F, Nicoletti F, Bruno V: Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci 2004, 24:828-835.
  • [33]Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V: Neuroprotective activity of metabotropic glutamate receptor ligands. Adv Exp Med Biol 2002, 513:197-223.
  • [34]Aguirre JA, Kehr J, Yoshitake T, Liu FL, Rivera A, Fernandez-Espinola S, Andbjer B, Leo G, Medhurst AD, Agnati LF, Fuxe K: Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res 2005, 1033:216-220.
  • [35]Vernon AC, Palmer S, Datla KP, Zbarsky V, Croucher MJ, Dexter DT: Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson’s disease. Eur J Neurosci 2005, 22:1799-1806.
  • [36]Rockenstein E, Mallory M, Mante M, Sisk A, Masliaha E: Early formation of mature amyloid-beta protein deposits in a mutant APP transgenic model depends on levels of Abeta(1–42). J Neurosci Res 2001, 66:573-582.
  • [37]Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E: Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 2002, 68:568-578.
  • [38]Movsesyan VA, Stoica BA, Faden AI: MGLuR5 activation reduces beta-amyloid-induced cell death in primary neuronal cultures and attenuates translocation of cytochrome c and apoptosis-inducing factor. J Neurochem 2004, 89:1528-1536.
  • [39]Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R: Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 2004, 24:3370-3378.
  • [40]Liu F, Gong X, Zhang G, Marquis K, Reinhart P, Andree TH: The inhibition of glycogen synthase kinase 3beta by a metabotropic glutamate receptor 5 mediated pathway confers neuroprotection to Abeta peptides. J Neurochem 2005, 95:1363-1372.
  • [41]Blanchard BJ, Thomas VL, Ingram VM: Mechanism of membrane depolarization caused by the Alzheimer Abeta1-42 peptide. Biochem Biophys Res Commun 2002, 293:1197-1203.
  • [42]Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL, Triller A: Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 2010, 66:739-754.
  • [43]Lea PM, Movsesyan VA, Faden AI: Neuroprotective activity of the mGluR5 antagonists MPEP and MTEP against acute excitotoxicity differs and does not reflect actions at mGluR5 receptors. Br J Pharmacol 2005, 145:527-534.
  • [44]Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M: Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 2007, 27:9220-9232.
  • [45]Arispe N, Rojas E, Pollard HB: Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 1993, 90:567-571.
  • [46]Kawahara M, Negishi-Kato M, Sadakane Y: Calcium dyshomeostasis and neurotoxicity of Alzheimer’s beta-amyloid protein. Expert Rev Neurother 2009, 9:681-693.
  • [47]Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T, Leenhouts KM, Oxford JT, Feany MB, Masliah E, Rohn TT: Calpain-cleavage of {alpha}-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol 2007, 170:1725-1738.
  • [48]Mishizen-Eberz AJ, Guttmann RP, Giasson BI, Day GA 3rd, Hodara R, Ischiropoulos H, Lee VM, Trojanowski JQ, Lynch DR: Distinct cleavage patterns of normal and pathologic forms of alpha-synuclein by calpain I in vitro. J Neurochem 2003, 86:836-847.
  • [49]Mishizen-Eberz AJ, Norris EH, Giasson BI, Hodara R, Ischiropoulos H, Lee VM, Trojanowski JQ, Lynch DR: Cleavage of alpha-synuclein by calpain: potential role in degradation of fibrillized and nitrated species of alpha-synuclein. Biochemistry 2005, 44:7818-7829.
  • [50]Kim SJ, Sung JY, Um JW, Hattori N, Mizuno Y, Tanaka K, Paik SR, Kim J, Chung KC: Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain. J Biol Chem 2003, 278:41890-41899.
  • [51]Games D, Seubert P, Rockenstein E, Patrick C, Trejo M, Ubhi K, Ettle B, Ghassemiam M, Barbour R, Schenk D, Nuber S, Masliah E: Axonopathy in an alpha-synuclein transgenic model of Lewy body disease is associated with extensive accumulation of C-terminal-truncated alpha-synuclein. Am J Pathol 2013, 182:940-953.
  • [52]Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM: Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 2012, 209:975-986.
  • [53]Tofaris GK, Garcia Reitbock P, Humby T, Lambourne SL, O’Connell M, Ghetti B, Gossage H, Emson PC, Wilkinson LS, Goedert M, Spillantini MG: Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1–120): implications for Lewy body disorders. J Neurosci 2006, 26:3942-3950.
  • [54]Ulusoy A, Febbraro F, Jensen PH, Kirik D, Romero-Ramos M: Co-expression of C-terminal truncated alpha-synuclein enhances full-length alpha-synuclein-induced pathology. Eur J Neurosci 2010, 32:409-422.
  • [55]Daher JP, Ying M, Banerjee R, McDonald RS, Hahn MD, Yang L, Flint Beal M, Thomas B, Dawson VL, Dawson TM, Moore DJ: Conditional transgenic mice expressing C-terminally truncated human alpha-synuclein (alphaSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons. Mol Neurodegener 2009, 4:34. BioMed Central Full Text
  • [56]Nuber S, Harmuth F, Kohl Z, Adame A, Trejo M, Schonig K, Zimmermann F, Bauer C, Casadei N, Giel C, Calaminus C, Pichler BJ, Jensen PH, Muller CP, Amato D, Kornhuber J, Teismann P, Yamakado H, Takahashi R, Winkler J, Masliah E, Riess O: A progressive dopaminergic phenotype associated with neurotoxic conversion of alpha-synuclein in BAC-transgenic rats. Brain 2013, 136:412-432.
  • [57]Grolla AA, Sim JA, Lim D, Rodriguez JJ, Genazzani AA, Verkhratsky A: Amyloid-beta and Alzheimer’s disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis 2013, 4:e623.
  • [58]Cleva RM, Olive MF: Positive allosteric modulators of type 5 metabotropic glutamate receptors (mGluR5) and their therapeutic potential for the treatment of CNS disorders. Molecules 2011, 16:2097-2106.
  • [59]Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM: Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 2013, 79:887-902.
  • [60]Lim D, Iyer A, Ronco V, Grolla AA, Canonico PL, Aronica E, Genazzani AA: Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia 2013, 61:1134-1145.
  • [61]Hsieh MH, Ho SC, Yeh KY, Pawlak CR, Chang HM, Ho YJ, Lai TJ, Wu FY: Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav 2012, 102:64-71.
  • [62]Black YD, Xiao D, Pellegrino D, Kachroo A, Brownell AL, Schwarzschild MA: Protective effect of metabotropic glutamate mGluR5 receptor elimination in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett 2010, 486:161-165.
  • [63]Marsh SE, Blurton-Jones M: Examining the mechanisms that link beta-amyloid and alpha-synuclein pathologies. Alzheimers Res Ther 2012, 4:11. BioMed Central Full Text
  • [64]Bate C, Gentleman S, Williams A: alpha-synuclein induced synapse damage is enhanced by amyloid-beta1-42. Mol Neurodegener 2010, 5:55. BioMed Central Full Text
  • [65]Ono K, Takahashi R, Ikeda T, Yamada M: Cross-seeding effects of amyloid beta-protein and alpha-synuclein. J Neurochem 2012, 122:883-890.
  • [66]Henning Jensen P: α-Synuclein/Amyloid Interactions. Methods Mol Med 2001, 62:61-65.
  • [67]Bar-On P, Crews L, Koob AO, Mizuno H, Adame A, Spencer B, Masliah E: Statins reduce neuronal alpha-synuclein aggregation in in vitro models of Parkinson’s disease. J Neurochem 2008, 105:1656-1667.
  • [68]Tiscornia G, Singer O, Verma IM: Design and cloning of lentiviral vectors expressing small interfering RNAs. Nat Protoc 2006, 1:234-240.
  • [69]Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E: Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 2009, 29:13578-13588.
  • [70]Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E: Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 2003, 23:1992-1996.
  • [71]Franklin KBJ, Paxinos G: The mouse brain in stereotaxic coordinates. San Diego: Academic Press; 1997.
  • [72]Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ: Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 2011, 145:863-874.
  • [73]Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L: Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000, 287:1265-1269.
  • [74]Overk CR, Kelley CM, Mufson EJ: Brainstem Alzheimer’s-like pathology in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 2009, 35:415-425.
  • [75]Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, Patrick C, Trejo M, Ubhi K, Rohn TT, Mueller-Steiner S, Seubert P, Barbour R, McConlogue L, Buttini M, Games D, Schenk D: Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 2011, 6:e19338.
  • [76]Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, Salmon D, Galasko D, Michael S, Savas JN, Yates JR, Glabe C, Masliah E: Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 2010, 277:3051-3067.
  • [77]Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E: b-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 2001, 32:213-223.
  • [78]Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ: Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002, 416:535-539.
  • [79]Levites Y, Das P, Price RW, Rochette MJ, Kostura LA, McGowan EM, Murphy MP, Golde TE: Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 2006, 116:193-201.
  文献评价指标  
  下载次数:32次 浏览次数:52次