期刊论文详细信息
Translational Neurodegeneration
Current advances in using neurotrophic factors to treat neurodegenerative disorders
Chengbiao Wu1  April M Weissmiller2 
[1] Department of Neurosciences, University of California San Diego, George Palade Labs (GPL), Room 337 MC-0649, 9500 Gilman Drive, La Jolla, CA, 92093, USA;Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, 92093-0649, USA
关键词: Mimetics;    Gene delivery;    NGF;    BDNF;    Neurotrophic factor;    Neurotrophin;   
Others  :  838946
DOI  :  10.1186/2047-9158-1-14
 received in 2012-06-08, accepted in 2012-07-26,  发布年份 2012
PDF
【 摘 要 】

Neurotrophic factors are best known for their roles in both development and continued maintenance of the nervous system. Their strong potential to elicit pro-survival and pro-functional responses in neurons of the peripheral and central nervous system make them good drug candidates for treatment of a multitude of neurodegenerative disorders. However, significant obstacles remain and need to be overcome before translating the potential of neurotrophins into the therapeutic arena. This article addresses current efforts and advances in resolving these challenges and provides an overview of roadmaps for future translational research and neurotrophin-based drug developments.

【 授权许可】

   
2012 Weissmiller and Wu; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140716031430499.pdf 517KB PDF download
Figure 2. 45KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Chao MV: Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003, 4:299-309.
  • [2]Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T: Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 1995, 92:8856-8860.
  • [3]Chen KS, Nishimura MC, Armanini MP, Crowley C, Spencer SD, Phillips HS: Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci 1997, 17:7288-7296.
  • [4]Levi-Montalcini R, Hamburger V: Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 1951, 116:321-361.
  • [5]Grimes ML, Beattie E, Mobley WC: A signaling organelle containing the nerve growth factor-activated receptor tyrosine kinase, TrkA. Proc Natl Acad Sci U S A 1997, 94:9909-9914.
  • [6]Delcroix JD, Valletta JS, Wu C, Hunt SJ, Kowal AS, Mobley WC: NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 2003, 39:69-84.
  • [7]Campenot RB: Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 1977, 74:4516-4519.
  • [8]Campenot RBM, Bronwyn L: Retrograde transport of neurotrophins: fact and function. Wiley Periodicals, Inc 2003, 58:217-229.
  • [9]Wu C, Lai CF, Mobley WC: Nerve growth factor activates persistent Rap1 signaling in endosomes. J Neurosci 2001, 21:5406-5416.
  • [10]Howe CL, Valletta JS, Rusnak AS, Mobley WC: NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 2001, 32:801-814.
  • [11]Capsoni S, Ugolini G, Comparini A, Ruberti F, Berardi N, Cattaneo A: Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci U S A 2000, 97:6826-6831.
  • [12]Calissano P, Matrone C, Amadoro G: Nerve growth factor as a paradigm of neurotrophins related to Alzheimer's disease. Dev Neurobiol 2010, 70:372-383.
  • [13]Venero JL, Knusel B, Beck KD, Hefti F: Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections: effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration. Neuroscience 1994, 59:797-815.
  • [14]Cooper JD, Lindholm D, Sofroniew MV: Reduced transport of [125I]nerve growth factor by cholinergic neurons and down-regulated TrkA expression in the medial septum of aged rats. Neuroscience 1994, 62:625-629.
  • [15]Cooper JD, Salehi A, Delcroix JD, Howe CL, Belichenko PV, Chua-Couzens J, Kilbridge JF, Carlson EJ, Epstein CJ, Mobley WC: Failed retrograde transport of NGF in a mouse model of Down's syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci U S A 2001, 98:10439-10444.
  • [16]Hefti F: Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 1986, 6:2155-2162.
  • [17]Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH: Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 1987, 329:65-68.
  • [18]Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T: Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci Lett 1999, 270:45-48.
  • [19]Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM: BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991, 350:230-232.
  • [20]Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F: Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004, 118:127-138.
  • [21]Strand AD, Baquet ZC, Aragaki AK, Holmans P, Yang L, Cleren C, Beal MF, Jones L, Kooperberg C, Olson JM, Jones KR: Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 2007, 27:11758-11768.
  • [22]Yu H, Chen ZY: The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011, 32:3-11.
  • [23]Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P, Thome J: Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 2001, 52:79-86.
  • [24]Arnold SE: Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann N Y Acad Sci 2000, 911:275-292.
  • [25]Belichenko PV, Kleschevnikov AM, Masliah E, Wu C, Takimoto-Kimura R, Salehi A, Mobley WC: Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J Comp Neurol 2009, 512:453-466.
  • [26]Croarkin PE, Levinson AJ, Daskalakis ZJ: Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev 2011, 35:818-825.
  • [27]Chong SA, Benilova I, Shaban H, De Strooper B, Devijver H, Moechars D, Eberle W, Bartic C, Van Leuven F, Callewaert G: Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer's disease: A multi-electrode array study. Neurobiol Dis 2011, :.
  • [28]Isacson O, Seo H, Lin L, Albeck D, Granholm AC: Alzheimer's disease and Down's syndrome: roles of APP, trophic factors and ACh. Trends Neurosci 2002, 25:79-84.
  • [29]Ochs G, Penn RD, York M, Giess R, Beck M, Tonn J, Haigh J, Malta E, Traub M, Sendtner M, Toyka KV: A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000, 1:201-206.
  • [30]Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL: Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav Brain Res 2010, 214:193-200.
  • [31]Cao L, Lin EJ, Cahill MC, Wang C, Liu X, During MJ: Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nat Med 2009, 15:447-454.
  • [32]ClinicalTrials.gov. , ; . http://clinicaltrials.gov/ webcite
  • [33]Eriksdotter Jonhagen M, Nordberg A, Amberla K, Backman L, Ebendal T, Meyerson B, Olson L, Seiger , Shigeta M, Theodorsson E, et al.: Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement Geriatr Cogn Disord 1998, 9:246-257.
  • [34]Isaacson LG, Saffran BN, Crutcher KA: Intracerebral NGF infusion induces hyperinnervation of cerebral blood vessels. Neurobiol Aging 1990, 11:51-55.
  • [35]Williams LR: Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp Neurol 1991, 113:31-37.
  • [36]Winkler J, Ramirez GA, Kuhn HG, Peterson DA, Day-Lollini PA, Stewart GR, Tuszynski MH, Gage FH, Thal LJ: Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann Neurol 1997, 41:82-93.
  • [37]Apfel SC: Neurotrophic factors and pain. Clin J Pain 2000, 16:S7-11.
  • [38]Apfel SC: Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol 2002, 50:393-413.
  • [39]Apfel SC, Schwartz S, Adornato BT, Freeman R, Biton V, Rendell M, Vinik A, Giuliani M, Stevens JC, Barbano R, Dyck PJ: Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: A randomized controlled trial. rhNGF Clinical Investigator Group. JAMA 2000, 284:2215-2221.
  • [40]Dyck PJ, Peroutka S, Rask C, Burton E, Baker MK, Lehman KA, Gillen DA, Hokanson JL, O'Brien PC: Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered heat-pain threshold in humans. Neurology 1997, 48:501-505.
  • [41]Ankeny DP, McTigue DM, Guan Z, Yan Q, Kinstler O, Stokes BT, Jakeman LB: Pegylated brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury. Exp Neurol 2001, 170:85-100.
  • [42]Pardridge WM, Wu D, Sakane T: Combined use of carboxyl-directed protein pegylation and vector-mediated blood–brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm Res 1998, 15:576-582.
  • [43]Hovland DN, Boyd RB, Butt MT, Engelhardt JA, Moxness MS, Ma MH, Emery MG, Ernst NB, Reed RP, Zeller JR, et al.: Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF in rhesus monkeys. Toxicol Pathol 2007, 35:1013-1029.
  • [44]Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, et al.: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006, 59:459-466.
  • [45]Beck M, Flachenecker P, Magnus T, Giess R, Reiners K, Toyka KV, Naumann M: Autonomic dysfunction in ALS: a preliminary study on the effects of intrathecal BDNF. Amyotroph Lateral Scler Other Motor Neuron Disord 2005, 6:100-103.
  • [46]Gage FH, Wolff JA, Rosenberg MB, Xu L, Yee JK, Shults C, Friedmann T: Grafting genetically modified cells to the brain: possibilities for the future. Neuroscience 1987, 23:795-807.
  • [47]Rosenberg MB, Friedmann T, Robertson RC, Tuszynski M, Wolff JA, Breakefield XO, Gage FH: Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 1988, 242:1575-1578.
  • [48]Tuszynski MH, Roberts J, Senut MC, U HS, Gage FH: Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 1996, 3:305-314.
  • [49]Emerich DF, Winn SR, Harper J, Hammang JP, Baetge EE, Kordower JH: Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J Comp Neurol 1994, 349:148-164.
  • [50]Kordower JH, Winn SR, Liu YT, Mufson EJ, Sladek JR, Hammang JP, Baetge EE, Emerich DF: The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sci U S A 1994, 91:10898-10902.
  • [51]Chen KS, Gage FH: Somatic gene transfer of NGF to the aged brain: behavioral and morphological amelioration. J Neurosci 1995, 15:2819-2825.
  • [52]Smith DE, Roberts J, Gage FH, Tuszynski MH: Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci U S A 1999, 96:10893-10898.
  • [53]Conner JM, Darracq MA, Roberts J, Tuszynski MH: Nontropic actions of neurotrophins: subcortical nerve growth factor gene delivery reverses age-related degeneration of primate cortical cholinergic innervation. Proc Natl Acad Sci U S A 2001, 98:1941-1946.
  • [54]Tuszynski MH, Thal L, Pay M, Salmon DP, HS U, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, et al.: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005, 11:551-555.
  • [55]Blesch A, Tuszynski MH: Transient growth factor delivery sustains regenerated axons after spinal cord injury. J Neurosci 2007, 27:10535-10545.
  • [56]Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, Murray M: Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 2003, 184:97-113.
  • [57]Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, Herscovitch P, Carson RE, Eckelman W, Reutter B, Cunningham J: Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006, 14:564-570.
  • [58]Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS: Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 2010, 18:1458-1461.
  • [59]Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, et al.: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 2000, 290:767-773.
  • [60]Gasmi M, Herzog CD, Brandon EP, Cunningham JJ, Ramirez GA, Ketchum ET, Bartus RT: Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson's disease. Mol Ther 2007, 15:62-68.
  • [61]Marks WJ, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA, Stoessl AJ, Olanow CW, Bartus RT: Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial. Lancet Neurol 2008, 7:400-408.
  • [62]Herzog CD, Brown L, Gammon D, Kruegel B, Lin R, Wilson A, Bolton A, Printz M, Gasmi M, Bishop KM, et al.: Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson's disease. Neurosurgery 2009, 64:602-612. discussion 612–603
  • [63]Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ: Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009, 73:1662-1669.
  • [64]Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, Dyke JP, Ballon D, Heier L, Greenwald BM, et al.: Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 2008, 19:463-474.
  • [65]Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, et al.: Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med 2009, 15:331-337.
  • [66]Blesch A, Conner J, Pfeifer A, Gasmi M, Ramirez A, Britton W, Alfa R, Verma I, Tuszynski MH: Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Mol Ther 2005, 11:916-925.
  • [67]Adessi C, Soto C: Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 2002, 9:963-978.
  • [68]Price RD, Milne SA, Sharkey J, Matsuoka N: Advances in small molecules promoting neurotrophic function. Pharmacol Ther 2007, 115:292-306.
  • [69]O'Leary PD, Hughes RA: Design of potent peptide mimetics of brain-derived neurotrophic factor. J Biol Chem 2003, 278:25738-25744.
  • [70]Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN, Nehama D, Rajadas J, Longo FM: Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 2010, 120:1774-1785.
  • [71]Schmid DA, Yang T, Ogier M, Adams I, Mirakhur Y, Wang Q, Massa SM, Longo FM, Katz DM: A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. J Neurosci 2012, 32:1803-1810.
  • [72]Han J, Pollak J, Yang T, Siddiqui MR, Doyle KP, Taravosh-Lahn K, Cekanaviciute E, Han A, Goodman JZ, Jones B, et al.: Delayed Administration of a Small Molecule Tropomyosin-Related Kinase B Ligand Promotes Recovery After Hypoxic-Ischemic Stroke. Stroke 2012, :.
  • [73]Herrmann N, Chau SA, Kircanski I, Lanctot KL: Current and emerging drug treatment options for Alzheimer's disease: a systematic review. Drugs 2011, 71:2031-2065.
  • [74]Lilly Halts Development of Semagacestat for Alzheimer's Disease Based on Preliminary Results of Phase III Clinical Trials. , ; . http://newsroom.lilly.com/releasedetail.cfm?releaseid=499794 webcite
  • [75]Kounnas MZ, Danks AM, Cheng S, Tyree C, Ackerman E, Zhang X, Ahn K, Nguyen P, Comer D, Mao L, et al.: Modulation of gamma-secretase reduces beta-amyloid deposition in a transgenic mouse model of Alzheimer's disease. Neuron 2010, 67:769-780.
  • [76]Hoes JN, Jacobs JW, Buttgereit F, Bijlsma JW: Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis. Nat Rev Rheumatol 2010, 6:693-702.
  • [77]Augustsson J, Eksborg S, Ernestam S, Gullstrom E, van Vollenhoven R: Low-dose glucocorticoid therapy decreases risk for treatment-limiting infusion reaction to infliximab in patients with rheumatoid arthritis. Ann Rheum Dis 2007, 66:1462-1466.
  • [78]Malysheva OA, Wahle M, Wagner U, Pierer M, Arnold S, Hantzschel H, Baerwald CG: Low-dose prednisolone in rheumatoid arthritis: adverse effects of various disease modifying antirheumatic drugs. J Rheumatol 2008, 35:979-985.
  • [79]Emery P, Fleischmann R, Filipowicz-Sosnowska A, Schechtman J, Szczepanski L, Kavanaugh A, Racewicz AJ, van Vollenhoven RF, Li NF, Agarwal S, et al.: The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum 2006, 54:1390-1400.
  • [80]Michos ED, Sibley CT, Baer JT, Blaha MJ, Blumenthal RS: Niacin and Statin Combination Therapy for Atherosclerosis Regression and Prevention of Cardiovascular Disease Events: Reconciling the AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) Trial With Previous Surrogate Endpoint Trials. J Am Coll Cardiol 2012, 59:2058-2064.
  • [81]McKenney JM, Jones PH, Bays HE, Knopp RH, Kashyap ML, Ruoff GE, McGovern ME: Comparative effects on lipid levels of combination therapy with a statin and extended-release niacin or ezetimibe versus a statin alone (the COMPELL study). Atherosclerosis 2007, 192:432-437.
  • [82]Thrailkill KM, Quattrin T, Baker L, Kuntze JE, Compton PG, Martha PM: Cotherapy with recombinant human insulin-like growth factor I and insulin improves glycemic control in type 1 diabetes. RhIGF-I in IDDM Study Group. Diabetes Care 1999, 22:585-592.
  文献评价指标  
  下载次数:10次 浏览次数:8次