期刊论文详细信息
Virology Journal
Mapping codon usage of the translation initiation region in porcine reproductive and respiratory syndrome virus genome
Xue-peng Cai3  Xue-nong Luo3  Yong-xi Dou3  Xu-sheng Ma3  Ji-dong Li1  Ya-li He4  Xiao-xia Ma2  Jun-hong Su3 
[1] School of Agriculture, Ningxia University, Yinchuan, 750021, RP China;College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, 730030, PR China;State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China;The School of Public Health, Lanzhou University, Lanzhou, 730000, RP China
关键词: translation selection;    translation efficiency;    translation initiation region;    codon usage bias;    PRRSV;   
Others  :  1155867
DOI  :  10.1186/1743-422X-8-476
 received in 2011-08-09, accepted in 2011-10-21,  发布年份 2011
PDF
【 摘 要 】

Background

Porcine reproductive and respitatory syndrome virus (PRRSV) is a recently emerged pathogen and severely affects swine populations worldwide. The replication of PRRSV is tightly controlled by viral gene expression and the codon usage of translation initiation region within each gene could potentially regulate the translation rate. Therefore, a better understanding of the codon usage pattern of the initiation translation region would shed light on the regulation of PRRSV gene expression.

Results

In this study, the codon usage in the translation initiation region and in the whole coding sequence was compared in PRRSV ORF1a and ORFs2-7. To investigate the potential role of codon usage in affecting the translation initiation rate, we established a codon usage model for PRRSV translation initiation region. We observed that some non-preferential codons are preferentially used in the translation initiation region in particular ORFs. Although some positions vary with codons, they intend to use codons with negative CUB. Furthermore, our model of codon usage showed that the conserved pattern of CUB is not directly consensus with the conserved sequence, but shaped under the translation selection.

Conclusions

The non-variation pattern with negative CUB in the PRRSV translation initiation region scanned by ribosomes is considered the rate-limiting step in the translation process.

【 授权许可】

   
2011 Su et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407120702291.pdf 339KB PDF download
Figure 1. 111KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Loula T: Mystery pig disease. Agri-Practice (USA) 1991.
  • [2]Keffaber K: Reproductive failure of unknown etiology. Am Assoc Swine Pract Newsl 1989, 1:1-9.
  • [3]Bautista EM, Goyal SM, Yoon IJ, Joo HS, Collins JE: Comparison of porcine alveolar macrophages and CL 2621 for the detection of porcine reproductive and respiratory syndrome (PRRS) virus and anti-PRRS antibody. Journal of Veterinary Diagnostic Investigation 1993, 5:163.
  • [4]Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, Goyal SM, McCullough S, Morrison RB, Joo HS, et al.: Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest 1992, 4:117-126.
  • [5]Meng XJ, Paul P, Halbur P, Lum M: Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV): implication for the existence of two genotypes of PRRSV in the USA and Europe. Archives of virology 1995, 140:745-755.
  • [6]Nelsen CJ, Murtaugh MP, Faaberg KS: Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 1999, 73:270-280.
  • [7]Wensvoort G, Terpstra C, Pol J, Ter Laak E, Bloemraad M, De Kluyver E, Kragten C, Van Buiten L, Den Besten A, Wagenaar F: Mystery swine disease in The Netherlands: the isolation of Lelystad virus. The Veterinary Quarterly 1991, 13:121.
  • [8]Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson WT, Morrison RB, Gorcyca D, Chladek D: Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). Journal of Veterinary Diagnostic Investigation 1992, 4:127.
  • [9]Cavanagh D: Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 1997, 142:629-633.
  • [10]Conzelmann KK, Visser N, Van Woensel P, Thiel HJ: Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology 1993, 193:329-339.
  • [11]Meulenberg JJM, Hulst MM, de Meijer EJ, Moonen PLJM, den Besten A, de Kluyver EP, Wensvoort G, Moormann RJM: Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 1993, 192:62-72.
  • [12]Snijder EJ, Meulenberg J: The molecular biology of arteriviruses. Journal of general virology 1998, 79:961.
  • [13]Spilman MS, Welbon C, Nelson E, Dokland T: Cryo-electron tomography of porcine reproductive and respiratory syndrome virus: organization of the nucleocapsid. Journal of general virology 2009, 90:527.
  • [14]Pasternak AO, Spaan WJM, Snijder EJ: Nidovirus transcription: how to make sense...? Journal of general virology 2006, 87:1403.
  • [15]Kim JK, Hollingsworth MJ: Localization of in vivo ribosome pause sites. Analytical biochemistry 1992, 206:183-188.
  • [16]Miyasaka H: The positive relationship between codon usage bias and translation initiation AUG context in Saccharomyces cerevisiae. Yeast 1999, 15:633-637.
  • [17]MIYASAKA H, KANAI S, TANAKA S, AKIYAMA H, HIRANO M: Statistical analysis of the relationship between translation initiation AUG context and gene expression level in humans. Bioscience, biotechnology, and biochemistry 2002, 66:667-669.
  • [18]Stanssens P, Remaut E, Fiers W: Inefficient translation initiation causes premature transcription termination in the IacZ gene. Cell 1986, 44:711-718.
  • [19]Zhou J, Zhang J, Ding Y, Chen H, Ma L, Liu Y: Characteristics of codon usage bias in two regions downstream of the initiation codons of foot-and-mouth disease virus. Biosystems 2010, 101:20-28.
  • [20]Ohno H, Sakai H, Washio T, Tomita M: Preferential usage of some minor codons in bacteria. Gene 2001, 276:107-115.
  • [21]Gouy M, Gautier C: Codon usage in bacteria: correlation with gene expressivity. Nucleic acids research 1982, 10:7055.
  • [22]Grantham R, Gautier C, Gouy M, Mercier R, Pave A: Codon catalog usage and the genome hypothesis. Nucleic Acids Res 1980, 8:r49-r62.
  • [23]Gustafsson C, Govindarajan S, Minshull J: Codon bias and heterologous protein expression. Trends Biotechnol 2004, 22:346-353.
  • [24]Kudla G, Murray AW, Tollervey D, Plotkin JB: Coding-sequence determinants of gene expression in Escherichia coli. Science 2009, 324:255-258.
  • [25]Liljenstrom H, von Heijne G: Translation rate modification by preferential codon usage: intragenic position effects. J Theor Biol 1987, 124:43-55.
  • [26]Lithwick G, Margalit H: Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res 2003, 13:2665-2673.
  • [27]Post LE, Nomura M: DNA sequences from the str operon of Escherichia coli. J Biol Chem 1980, 255:4660-4666.
  • [28]Sharp PM, Emery LR, Zeng K: Forces that influence the evolution of codon bias. Philosophical Transactions of the Royal Society B: Biological Sciences 2010, 365:1203.
  • [29]Vicario S, Moriyama EN, Powell JR: Codon usage in twelve species of Drosophila. BMC evolutionary biology 2007, 7:226. BioMed Central Full Text
  • [30]Liu YS, Zhou JH, Chen HT, Ma LN, Ding YZ, Wang M, Zhang J: Analysis of synonymous codon usage in porcine reproductive and respiratory syndrome virus. Infect Genet Evol 2010, 10:797-803.
  • [31]Jacques N, Dreyfus M: Translation initiation in Escherichia coli: old and new questions. Mol Microbiol 1990, 4:1063-1067.
  • [32]Braiman M, Stern LJ, Chao BH, Khorana H: Structure-function studies on bacteriorhodopsin. IV. Purification and renaturation of bacterio-opsin polypeptide expressed in Escherichia coli. Journal of Biological Chemistry 1987, 262:9271.
  • [33]Andersson SG, Kurland CG: Codon preferences in free-living microorganisms. Microbiol Rev 1990, 54:198-210.
  • [34]Hooper SD, Berg OG: Gradients in nucleotide and codon usage along Escherichia coli genes. Nucleic acids research 2000, 28:3517.
  • [35]Liu YS, Zhou JH, Chen HT, Ma LN, Pejsak Z, Ding YZ, Zhang J: The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. Infect Genet Evol 2011, 11:1168-1173.
  • [36]Domingo E, Holland JJ: RNA virus mutations and fitness for survival. Annu Rev Microbiol 1997, 51:151-178.
  • [37]Elena SF, Miralles R, Cuevas JM, Turner PE, Moya A: The two faces of mutation: extinction and adaptation in RNA viruses. IUBMB Life 2000, 49:5-9.
  • [38]Elena SF: Restrictions to RNA virus adaptation: an experimental approach. Antonie Van Leeuwenhoek 2002, 81:135-142.
  • [39]Elena SF, Sanjuan R: RNA viruses as complex adaptive systems. Biosystems 2005, 81:31-41.
  • [40]Elena SF, Carrasco P, Daros JA, Sanjuan R: Mechanisms of genetic robustness in RNA viruses. EMBO Rep 2006, 7:168-173.
  • [41]Klein J: Understanding the molecular epidemiology of foot-and-mouth-disease virus. Infect Genet Evol 2009, 9:153-161.
  • [42]Wilke CO: Quasispecies theory in the context of population genetics. BMC evolutionary biology 2005, 5:44. BioMed Central Full Text
  • [43]Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL: Comparative genomics of foot-and-mouth disease virus. J Virol 2005, 79:6487-6504.
  • [44]Chen Z, Li K, Plagemann PGW: Neuropathogenicity and sensitivity to antibody neutralization of lactate dehydrogenase-elevating virus are determined by polylactosaminoglycan chains on the primary envelope glycoprotein. Virology 2000, 266:88-98.
  • [45]Han J, Rutherford MS, Faaberg KS: The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans-and cis-cleavage activities. Journal of virology 2009, 83:9449.
  • [46]Akashi H: Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 1994, 136:927-935.
  • [47]Krasheninnikov IA, Komar AA, Adzhubei IA: Nonuniform size distribution of nascent globin peptides, evidence for pause localization sites, and a contranslational protein-folding model. J Protein Chem 1991, 10:445-453.
  • [48]Curran JF, Yarus M: Rates of aminoacyl-tRNA selection at 29 sense codons in vivo* 1. Journal of molecular biology 1989, 209:65-77.
  • [49]S rensen MA, Pedersen S: Absolute in vivo translation rates of individual codons in Escherichia coli* 1:: The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. Journal of molecular biology 1991, 222:265-280.
  • [50]Martin SL, Vrhovski B, Weiss AS: Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. Gene 1995, 154:159-166.
  • [51]Mohsen AW, Vockley J: High-level expression of an altered cDNA encoding human isovaleryl-CoA dehydrogenase in Escherichia coli. Gene 1995, 160:263-267.
  • [52]Nakamura T, Suyama A, Wada A: Two types of linkage between codon usage and gene-expression levels. FEBS letters 1991, 289:123-125.
  • [53]Precup J, Parker J: Missense misreading of asparagine codons as a function of codon identity and context. Journal of Biological Chemistry 1987, 262:11351.
  • [54]Chavancy G, Garel JP: Does quantitative tRNA adaptation to codon content in mRNA optimize the ribosomal translation efficiency? Proposal for a translation system model. Biochimie 1981, 63:187-195.
  • [55]Bonekamp F, Andersen HD, Christensen T, Jensen KF: Codon-defined ribosomal pausing in Escherichia coli detected by using the pyrE attenuator to probe the coupling between transcription and translation. Nucleic acids research 1985, 13:4113.
  • [56]Grosjean H, Fiers W: Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 1982, 18:199-209.
  • [57]Robinson M, Lilley R, Little S, Emtage J, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G: Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic acids research 1984, 12:6663.
  • [58]Maroun LE, Degner M, Precup JW, Franciskovich PP: Eukaryotic mRNA 5'-Leader sequences have dual regions of complementarity to the 3'-terminus of 18s rRNA*. Journal of theoretical biology 1986, 120:85-98.
  • [59]Komar AA, Lesnik T, Reiss C: Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett 1999, 462:387-391.
  • [60]Lavner Y, Kotlar D: Codon bias as a factor in regulating expression via translation rate in the human genome. Gene 2005, 345:127-138.
  • [61]Adzhubei IA, Adzhubei AA, Neidle S: An Integrated Sequence-Structure Database incorporating matching mRNA sequence, amino acid sequence and protein three-dimensional structure data. Nucleic Acids Res 1998, 26:327-331.
  • [62]Oresic M, Shalloway D: Specific correlations between relative synonymous codon usage and protein secondary structure1. Journal of molecular biology 1998, 281:31-48.
  • [63]Purvis IJ, Bettany AJE, Santiago TC, Coggins JR, Duncan K, Eason R, Brown AJP: The efficiency of folding of some proteins is increased by controlled rates of translation in vivo:: A hypothesis. Journal of molecular biology 1987, 193:413-417.
  • [64]Thanaraj T, Argos P: Ribosome-mediated translational pause and protein domain organization. Protein Science: A Publication of the Protein Society 1996, 5:1594.
  • [65]Tao X, Dafu D: The relationship between synonymous codon usage and protein structure. FEBS letters 1998, 434:93-96.
  • [66]Deana A, Ehrlich R, Reiss C: Silent mutations in the Escherichia coli ompA leader peptide region strongly affect transcription and translation in vivo. Nucleic Acids Res 1998, 26:4778-4782.
  • [67]Hoekema A, Kastelein RA, Vasser M, de Boer HA: Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 1987, 7:2914-2924.
  • [68]Komar AA, Jaenicke R: Kinetics of translation of [gamma] B crystallin and its circularly permutated variant in an in vitro cell-free system: possible relations to codon distribution and protein folding. FEBS letters 1995, 376:195-198.
  • [69]Chen GT, Inouye M: Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes Dev 1994, 8:2641-2652.
  • [70]Chen GFT, Inouye M: Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic acids research 1990, 18:1465.
  • [71]Belsham G: Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. The EMBO Journal 1992, 11:1105.
  文献评价指标  
  下载次数:18次 浏览次数:24次