期刊论文详细信息
Particle and Fibre Toxicology
Analysing chemical attraction of gravid Anopheles gambiae sensu stricto with modified BG-Sentinel traps
Ulrike Fillinger1  Jenny M. Lindh2  Steven W. Lindsay3  Baldwyn Torto1  Paul Ouma1  Manuela Herrera-Varela1  Michael N. Okal1 
[1] International Centre of Insect Physiology and Ecology, Nairobi, Kenya;Royal Institute of Technology, Stockholm S-100 44, Sweden;School of Biological and Biomedical Sciences, Science Laboratories, Durham University, Durham DH1 3LE, UK
关键词: Semiochemicals;    Attractants;    BG-Sentinel mosquito trap;    Choice-tests;    Breeding site;    Oviposition;    Anopheles gambiae;   
Others  :  1224683
DOI  :  10.1186/s13071-015-0916-0
 received in 2015-03-23, accepted in 2015-05-25,  发布年份 2015
PDF
【 摘 要 】

Background

Cues that guide gravid Anopheles gambiae sensu lato to oviposition sites can be manipulated to create new strategies for monitoring and controlling malaria vectors. However, progress towards identifying such cues is slow in part due to the lack of appropriate tools for investigating long-range attraction to putative oviposition substrates. This study aimed to develop a relatively easy-to-use bioassay system that can effectively analyse chemical attraction of gravid Anopheles gambiae sensu stricto.

Methods

BG-Sentinel™ mosquito traps that use fans to dispense odourants were modified to contain aqueous substrates. Choice tests with two identical traps set in an 80 m2 screened semi-field system were used to analyse the catch efficacy of the traps and the effectiveness of the bioassay. A different batch of 200 gravid An. gambiae s.s. was released on every experimental night. Choices tested were (1) distilled versus distilled water (baseline) and (2) distilled water versus soil infusion. Further, comparisons were made of distilled water and soil infusions both containing 150 g/l of Sodium Chloride (NaCl). Sodium Chloride is known to affect the release rate of volatiles from organic substrates.

Results

When both traps contained distilled water, 45 % (95 confidence interval (CI) 33–57 %) of all released mosquitoes were trapped. The proportion increased to 84 % (95 CI 73–91 %) when traps contained soil infusions. In choice tests, a gravid female was twice as likely to be trapped in the test trap with soil infusion as in the trap with distilled water (odds ratio (OR) 1.8, 95 % CI 1.3–2.6). Furthermore, the attraction of gravid females towards the test trap with infusion more than tripled (OR 3.4, 95 % CI 2.4–4.8) when salt was added to the substrates.

Conclusion

Minor modifications of the BG-Sentinel™ mosquito trap turned it into a powerful bioassay tool for evaluating the orientation of gravid mosquitoes to putative oviposition substrates using olfaction. This study describes a useful tool for investigating olfactory attraction of gravid An. gambiae s.s. and provides additional evidence that gravid mosquitoes of this species are attracted to and can be baited with attractive substrates such as organic infusions over a distance of several metres.

【 授权许可】

   
2015 Okal et al.

【 预 览 】
附件列表
Files Size Format View
20150912080216262.pdf 1176KB PDF download
Fig. 3. 29KB Image download
Fig. 2. 98KB Image download
Fig. 1. 61KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Nyarango PM, Gebremeskel T, Mebrahtu G, Mufunda J, Abdulmumini U, Ogbamariam A et al.. A steep decline of malaria morbidity and mortality trends in Eritrea between 2000 and 2004: the effect of combination of control methods. Malar J. 2006; 5:33. BioMed Central Full Text
  • [2]World Malaria Report. WHO Press, Geneva; 2013.
  • [3]Cotter C, Sturrock HJ, Hsiang MS, Liu J, Phillips AA, Hwang J et al.. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013; 382(9895):900-11.
  • [4]Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011; 10:80. BioMed Central Full Text
  • [5]Chandre F, Darriet F, Manguin S, Brengues C, Carnevale P, Guillet P. Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s. from Cote d'Ivoire. J Am Mosq Control Assoc. 1999; 15(1):53-9.
  • [6]Chandre F, Darrier F, Manga L, Akogbeto M, Faye O, Mouchet J et al.. Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ. 1999; 77(3):230-4.
  • [7]Ranson H, N'Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011; 27(2):91-8.
  • [8]Riehle MM, Guelbeogo WM, Gneme A, Eiglmeier K, Holm I, Bischoff E et al.. A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites. Science. 2011; 331(6017):596-8.
  • [9]Sougoufara S, Diedhiou SM, Doucoure S, Diagne N, Sembene PM, Harry M et al.. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014; 13:125. BioMed Central Full Text
  • [10]Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HC et al.. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2013; 67(4):1218-30.
  • [11]Govella N, Chaki P, Killeen G. Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malar J. 2013; 12(1):124. BioMed Central Full Text
  • [12]Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014; 13:330. BioMed Central Full Text
  • [13]Okumu FO, Govella NJ, Moore SJ, Chitnis N, Killeen GF. Potential benefits, limitations and target product-profiles of odor-baited mosquito traps for malaria control in Africa. PLoS One. 2010; 5(7):e11573.
  • [14]Meijerink J, Brack MAH, Brack AA, Adam W, Dekker T, Posthumus MA et al.. Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J Chem Ecol. 2000; 26(6):1367-82.
  • [15]Braks MAH, Meijerink J, Takken W. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer. Physiol Entomol. 2001; 26(2):142-8.
  • [16]Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PE, Borgemeister C et al.. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS One. 2014; 9(2):e89818.
  • [17]Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E et al.. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS One. 2010; 5(1):e8951.
  • [18]Lindh JM, Kannaste A, Knols BG, Faye I, Borg-Karlson AK. Oviposition responses of Anopheles gambiae s.s. (Diptera: Culicidae) and identification of volatiles from bacteria-containing solutions. J Med Entomol. 2008; 45(6):1039-49.
  • [19]Blackwell A, Johnson SN. Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s. Ann Trop Med Parasitol. 2000; 94(4):389-98.
  • [20]Huang J, Walker ED, Vulule J, Miller JR. The influence of darkness and visual contrast on oviposition by Anopheles gambiae in moist and dry substrates. Physiol Entomol. 2007; 32:34-40.
  • [21]Huang J, Walker ED, Otienoburu PE, Amimo F, Vulule J, Miller JR. Laboratory tests of oviposition by the African malaria mosquito, Anopheles gambiae, on dark soil as influenced by presence or absence of vegetation. Malar J. 2006; 5:88. BioMed Central Full Text
  • [22]Otienoburu PE, Bayoh N, Gimnig J, Huang J, Walker ED, Otieno MF et al.. Anopheles gambiae (Diptera: Culicidae) oviposition as influenced by type of water infused into black and red soils of western Kenya. Trop Insect Sci. 2007; 27(1):2-5.
  • [23]Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD et al.. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002; 419(6906):520-6.
  • [24]Barillas-Mury C, Kumar S. Plasmodium–mosquito interactions: a tale of dangerous liaisons. Cell Microbiol. 2005; 7(11):1539-45.
  • [25]Bentley MD, Day JF. Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol. 1989; 34:401-21.
  • [26]Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS et al.. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 2010; 7(8): Article ID e1000303
  • [27]Huang J, Walker ED, Giroux PY, Vulule J, Miller JR. Ovipositional site selection by Anopheles gambiae: influences of substrate moisture and texture. Med Vet Entomol. 2005; 19(4):442-50.
  • [28]Okal M, Francis B, Herrera-Varela M, Fillinger U, Lindsay S. Water vapour is a pre-oviposition attractant for the malaria vector Anopheles gambiae sensu stricto. Malar J. 2013; 12(1):365. BioMed Central Full Text
  • [29]Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC, Knols BGJ. Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci. 2004; 24(3):260-5.
  • [30]Huang J, Miller JR, Chen SC, Vulule JM, Walker ED. Anopheles gambiae (Diptera: Culicidae) oviposition in response to agarose media and cultured bacterial volatiles. J Med Entomol. 2006; 43(3):498-504.
  • [31]Herrera-Varela M, Lindh J, Lindsay SW, Fillinger U. Habitat discrimination by gravid Anopheles gambiae sensu lato - a push-pull system. Malar J. 2014; 13(1):133. BioMed Central Full Text
  • [32]Rinker DC, Pitts RJ, Zhou X, Suh E, Rokas A, Zwiebel LJ. Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc Natl Acad Sci U S A. 2013; 110(20):8260-5.
  • [33]Alonso M, Castellanos M, Besalú E, Sanchez JM. A headspace needle-trap method for the analysis of volatile organic compounds in whole blood. J Chromatogr. 2012; 1252:23-30.
  • [34]Buchholz K, Pawilszyn J. Optimization of solid-phase microextraction conditions for determination of phenols. Anal Chem. 1994; 66:160-7.
  • [35]Friant SL, Suffet IH. Interactive effects of temperature, salt concentration, and pH on head space analysis for isolating volatile trace organics in aqueous environmental samples. Anal Chem. 1979; 51:2167-72.
  • [36]Gorgenyi M, Dewulf J, Van Langenhove H, Heberger K. Aqueous salting-out effect of inorganic cations and anions on non-electrolytes. Chemosphere. 2006; 65:802-10.
  • [37]Morrison TJ. The salting-out effect. Trans Faraday Soc. 1944; 40:43-8.
  • [38]Nakamura S, Daishima S. Simultaneous detrmination of 22 volatile organic compounds, methyl-tert-butyl ether, 1,4-dioxane, 2-methylisoborneol and geosmin in water by headspace solid phase microextraction-gas chromatography–mass spectrometry. Anal Chim Acta. 2005; 548:79-85.
  • [39]Xie W-H, Shiu W-Y, Mackay D. A review of the effect of salts on the solubility of organic compounds in seawater. Mar Environ Res. 1997; 44(4):429-44.
  • [40]Mozuraitis R, Buda V, Borg-Karlson AK. Optimization of solid-phase microextraction sampling for analysis of volatile compounds emitted from oestrous urine of mares. Z Naturforch C. 2010; 65(1–2):127-33.
  • [41]Lindh JM, Okal MN, Herrera-Varela M, Borg-Karlson AK, Torto B, Lindsay SW et al.. Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex. Malar J. 2015; 14(1):119. BioMed Central Full Text
  • [42]Dugassa S, Lindh J, Torr S, Lindsay S, Fillinger U. Evaluation of the influence of electric nets on the behaviour of oviposition site seeking Anopheles gambiae s.s. Parasit Vectors. 2014; 7(1):e272. BioMed Central Full Text
  • [43]Eiras ÁE, Rose A, Geier M. New tools for monitoring gravid females of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera: Culicidae), vectors of dengue and other arboviral diseases. Int J Med Microbiol. 2004; 38 Suppl. 38:51-2.
  • [44]Maciel-de-Freitas R, Eiras AE, Lourenco-de-Oliveira R. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 2006; 101(3):321-5.
  • [45]The BG-Sentinel: Biogents’ mosquito trap for researchers. Available: [http://www.bg-sentinel.com/]
  • [46]Isoe J, Millar JG, Beehler JW. Bioassays for Culex (Diptera: Culicidae) mosquito oviposition attractants and stimulants. J Med Entomol. 1995; 32(4):475-83.
  • [47]R: A language and environment for statistical computing. R Foundation for Statistical computing, Vienna, Austria; 2011.
  • [48]Dethier VG, Browne LB, Smith CN. The designation of chemicals in terms of the responses they elicit from insects. J Econ Entomol. 1960; 53:134-6.
  • [49]Miller JR, Siegert PY, Amimo FA, Walker ED. Designation of chemicals in terms of the locomotor responses they elicit from insects: an update of Dethier et al. J Econ Entomol 2009. 1960; 102(6):2056-60.
  • [50]Gillies MT. The role of carbon dioxide in host-finding by mosquitoes: a review. Bull Entomol Res. 1980; 70:525-32.
  • [51]Setschenow J. Ueber die Konstitution der Salzloesungen auf Grund ihres Verhaltens zu Kohlensaeure. Z Phys Chem. 1889;4:117–28.
  • [52]Ni N, Yalkowsky SH. Prediction of Setschenow constants. Int J Pharm. 2003; 254(2):167-72.
  • [53]Yizhak M. Prediction of salting-out and salting-in constants. J Mol Liq. 2013; 177:7-10.
  • [54]Schmied WH, Takken W, Killeen GF, Knols BG, Smallegange RC. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania. Malar J. 2008; 7:230. BioMed Central Full Text
  • [55]Gama RA, Silva IM, Geier M, Eiras AE. Development of the BG-Malaria trap as an alternative to human-landing catches for the capture of Anopheles darlingi. Mem Inst Oswaldo Cruz. 2013; 108:763-71.
  文献评价指标  
  下载次数:23次 浏览次数:4次