期刊论文详细信息
Nutrition Journal
Relationship of vitamin D status and bone mass according to vitamin D-binding protein genotypes
Boonsong Ongphiphadhanakul3  Piyamitr Sritara3  Wipa Ratanachaiwong2  Suwannee Chanprasertyothin3  La-or Chailurkit3  Chanika Sritara1  Hataikarn Nimitphong3 
[1] Department of Radiology, Ramathibodi Hospital, Mahidol University, Rama VI Road, Ratchathewi 10400, Bangkok, Thailand;Health Office, Electricity Generating Authority of Thailand, Nonthaburi 11130, Thailand;Department of Medicine and Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama VI Road, Ratchathewi 10400, Bangkok, Thailand
关键词: DBP rs2282679 genotypes;    25(OH)D;    Fetuin-A;    Bone turnover markers;    BMD;   
Others  :  1171506
DOI  :  10.1186/s12937-015-0016-1
 received in 2014-12-12, accepted in 2015-03-03,  发布年份 2015
PDF
【 摘 要 】

Background

Vitamin D-binding protein (DBP) may alter the biological activity of total 25-hydroxyvitamin D [25(OH)D]; this could influence on the effects of vitamin D in relation to bone mineral density (BMD) and fractures. Emerging data suggest that fetuin-A may be involved in bone metabolism. We aimed to investigate the influence of DBP gene polymorphism on the relationship of vitamin D status and fetuin-A levels to BMD and bone markers.

Methods

This cross-sectional study was part of a health survey of employees of the Electricity Generating Authority of Thailand (1,734 healthy subjects, 72% male). Fasting blood samples were assayed for 25(OH)D, fetuin-A, N-terminal propeptides of type 1 procollagen (P1NP), C-terminal cross-linking telopeptides of type I collagen (CTx-I), and DBP rs2282679 genotypes. L1–L4 lumbar spine and femoral BMD were measured using dual-energy X-ray absorptiometry.

Results

The DBP rs2282679 genotype distribution conformed to the Hardy–Weinberg equilibrium. There were no correlations between 25(OH)D levels and BMD and bone markers. But a trend of positive correlation was observed for the DBP genotypes with total hip BMD, and for the interaction between 25(OH)D and DBP genotypes with BMD at all femoral sites. We further analyzed data according to DBP genotypes. Only in subjects with the AA (common) genotype, 25(OH)D levels were positively related to BMD and bone markers, while fetuin-A was negatively related to total hip BMD, independently of age, gender and BMI.

Conclusions

The interaction between vitamin D status, as measured by circulating 25(OH)D and DBP rs2282679 genotypes, modified the association between 25(OH)D and BMD and bone markers. Differences in DBP genotypes additionally influenced the correlation of fetuin-A levels with femoral BMD.

【 授权许可】

   
2015 Nimitphong et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150419081123264.pdf 543KB PDF download
Figure 2. 16KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Holick MF: Vitamin D, deficiency. N Engl J Med 2007, 357(3):266-81.
  • [2]Atkins GJ, Anderson PH, Findlay DM, Welldon KJ, Vincent C, Zannettino AC, et al.: Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone 2007, 40(6):1517-28.
  • [3]Morris HA, Anderson PH: Autocrine and paracrine actions of vitamin d. Clin Biochem Rev 2010, 31(4):129-38.
  • [4]Holick MF: Resurrection of vitamin D deficiency and rickets. J Clin Invest 2006, 116(8):2062-72.
  • [5]Moyer VA: Vitamin D and calcium supplementation to prevent fractures in adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2013, 158(9):691-6.
  • [6]Reid IR, Bolland MJ, Grey A: Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet 2014, 383(9912):146-55.
  • [7]Chun RF, Peercy BE, Orwoll ES, Nielson CM, Adams JS, Hewison M: Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol 2014, 144:132-7.
  • [8]Arnaud J, Constans J: Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet 1993, 92(2):183-8.
  • [9]Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al.: Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 2010, 19(13):2739-45.
  • [10]Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al.: Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010, 376(9736):180-8.
  • [11]Lu L, Sheng H, Li H, Gan W, Liu C, Zhu J, et al.: Associations between common variants in GC and DHCR7/NADSYN1 and vitamin D concentration in Chinese Hans. Hum Genet 2012, 131(3):505-12.
  • [12]Zhang Z, He JW, Fu WZ, Zhang CQ, Zhang ZL: An analysis of the association between the vitamin D pathway and serum 25-hydroxyvitamin D levels in a healthy Chinese population. J Bone Miner Res 2013, 28(8):1784-92.
  • [13]Rasul S, Wagner L, Kautzky-Willer A: Fetuin-A and angiopoietins in obesity and type 2 diabetes mellitus. Endocrine 2012, 42(3):496-505.
  • [14]Chailurkit L, Kruavit A, Rajatanavin R, Ongphiphadhanakul B: The relationship of fetuin-A and lactoferrin with bone mass in elderly women. Osteoporos Int 2011, 22(7):2159-64.
  • [15]Ix JH, Wassel CL, Bauer DC, Toroian D, Tylavsky FA, Cauley JA, et al.: Fetuin-a and BMD in older persons: the health aging and body composition (health ABC) study. J Bone Miner Res 2009, 24(3):514-21.
  • [16]Price PA, Williamson MK, Nguyen TM, Than TN: Serum levels of the fetuin-mineral complex correlate with artery calcification in the rat. J Biol Chem 2004, 279(3):1594-600.
  • [17]Manenti L, Vaglio A, Pasquali S: Increased fetuin-A levels following treatment with a vitamin D analog. Kidney Int 2010, 78(11):1187. author reply 1187–1189
  • [18]Vathesatogkit P, Woodward M, Tanomsup S, Hengprasith B, Aekplakorn W, Yamwong S, et al.: Long-term effects of socioeconomic status on incident hypertension and progression of blood pressure. J Hypertens 2012, 30(7):1347-53.
  • [19]Sritara C, Ongphiphadhanakul B, Chailurkit L, Yamwong S, Ratanachaiwong W, Sritara P: Serum uric acid levels in relation to bone-related phenotypes in men and women. J Clin Densitom 2013, 16(3):336-40.
  • [20]Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, et al.: Official positions of the international society for clinical densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom 2008, 11(1):75-91.
  • [21]Institute of Medicine: Dietary Reference Intakes for Calcium and Vitamin D. National Academy of Sciences, Washington, DC; 2011.
  • [22]Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG: Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 1986, 63(4):954-9.
  • [23]Safadi FF, Thornton P, Magiera H, Hollis BW, Gentile M, Haddad JG, et al.: Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest 1999, 103(2):239-51.
  • [24]Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, et al.: An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999, 96(4):507-15.
  • [25]Johnsen MS, Grimnes G, Figenschau Y, Torjesen PA, Almas B, Jorde R: Serum free and bio-available 25-hydroxyvitamin D correlate better with bone density than serum total 25-hydroxyvitamin D. Scand J Clin Lab Invest 2014, 74(3):177-83.
  • [26]Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, et al.: Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res 2011, 26(7):1609-16.
  • [27]Chun RF: New perspectives on the vitamin D binding protein. Cell Biochem Funct 2012, 30(6):445-56.
  • [28]Lauridsen AL, Vestergaard P, Hermann AP, Brot C, Heickendorff L, Mosekilde L, et al.: Plasma concentrations of 25-hydroxy-vitamin D and 1,25-dihydroxy-vitamin D are related to the phenotype of Gc (vitamin D-binding protein): a cross-sectional study on 595 early postmenopausal women. Calcif Tissue Int 2005, 77(1):15-22.
  • [29]Chun RF, Lauridsen AL, Suon L, Zella LA, Pike JW, Modlin RL, et al.: Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 2010, 95(7):3368-76.
  • [30]Jeffery LE, Wood AM, Qureshi OS, Hou TZ, Gardner D, Briggs Z, et al.: Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol 2012, 189(11):5155-64.
  • [31]Bikle DD, Gee E: Free, and not total, 1,25-dihydroxyvitamin D regulates 25-hydroxyvitamin D metabolism by keratinocytes. Endocrinology 1989, 124(2):649-54.
  • [32]Mori K, Emoto M, Inaba M: Fetuin-A: a multifunctional protein. Recent Pat Endocr Metab Immune Drug Discov 2011, 5(2):124-46.
  • [33]Price PA, Toroian D, Lim JE: Mineralization by inhibitor exclusion: the calcification of collagen with fetuin. J Biol Chem 2009, 284(25):17092-101.
  • [34]Mori K, Emoto M, Inaba M: Fetuin-A and the cardiovascular system. Adv Clin Chem 2012, 56:175-95.
  文献评价指标  
  下载次数:16次 浏览次数:7次