| Virology Journal | |
| A serological survey of human adenovirus serotype 2 and 5 circulating pediatric populations in Changchun, China, 2011 | |
| Xianghui Yu4  Wei Kong4  Caijun Sun1  Lina Gu2  Chu Wang3  Jianing Dong3  Zhen Wang3  Bin Yu4  | |
| [1] State Key Laboratory of Respiratory Diseases, Center for Infection & Immunity, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China;Department of ICU, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China;National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, China;Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China | |
| 关键词: HIV vaccine; Neutralizing antibodies; Seroprevalence; Adenovirus; | |
| Others : 1152954 DOI : 10.1186/1743-422X-9-287 |
|
| received in 2012-02-07, accepted in 2012-10-31, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Efficacy of recombinant adenovirus serotype 5 (rAd5) vaccine vectors for human immunodeficiency virus type 1 (HIV-1) and other pathogens have been shown to be limited by high titers of pre-existing Ad5 neutralizing antibodies (NAbs) in the developing world.
Results
Using a secreted embryonic alkaline phosphatase (SEAP) neutralization assay, 50% serum neutralization titers against rAd2 and rAd5 vectors were measured in samples from 274 infants and young children in northeast China. The pediatric population was found to be 59.6% and 43.3% seropositive for rAd2 and rAd5, respectively. Of all participants, 44.9% had moderate and high (> 200) and 25.6% had high (>1000) Ad2 NAb titers, compared with the corresponding rates of 26.6% and 9.3% against Ad5. Marked age-dependent increases in NAb titers to both Ad serotypes were observed across five age groups, with the exception of infants in the 0-6-month group commonly having relatively high titers due to pre-existing maternal antibodies.
Conclusions
Our data suggest that Ad-based therapies may be suitible for children in the 7-12-month age range in this region.
【 授权许可】
2012 Yu et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150407012835574.pdf | 249KB | ||
| Figure 3. | 35KB | Image | |
| Figure 2. | 49KB | Image | |
| Figure 1. | 53KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Berk A: Adenoviridae: The viruses and their replication. In Fields virology. 5th edition. Edited by Knipe DM HP. Lippincott Williams & Wilkins, Philadelphia, PA; 2007:2355-2394.
- [2]Seregin SS, Amalfitano A: Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther 2009, 9:1521-1531.
- [3]Lasaro MO, Ertl HC: New insights on adenovirus as vaccine vectors. Mol Ther 2009, 17:1333-1339.
- [4]Yang ZY, Wyatt LS, Kong WP, Moodie Z, Moss B, Nabel GJ: Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J Virol 2003, 77:799-803.
- [5]Roberts DM, Nanda A, Havenga MJ, Abbink P, Lynch DM, Ewald BA, Liu J, Thorner AR, Swanson PE, Gorgone DA, et al.: Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006, 441:239-243.
- [6]Priddy FH, Brown D, Kublin J, Monahan K, Wright DP, Lalezari J, Santiago S, Marmor M, Lally M, Novak RM, et al.: Safety and immunogenicity of a replication-incompetent adenovirus type 5 HIV-1 clade B gag/pol/nef vaccine in healthy adults. Clin Infect Dis 2008, 46:1769-1781.
- [7]Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, de Bethune MP, Kostense S, Penders G, Helmus N, Koudstaal W, et al.: Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 2003, 77:8263-8271.
- [8]Mast TC, Kierstead L, Gupta SB, Nikas AA, Kallas EG, Novitsky V, Mbewe B, Pitisuttithum P, Schechter M, Vardas E, et al.: International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine 2010, 28:950-957.
- [9]Thorner AR, Vogels R, Kaspers J, Weverling GJ, Holterman L, Lemckert AA, Dilraj A, McNally LM, Jeena PM, Jepsen S, et al.: Age dependence of adenovirus-specific neutralizing antibody titers in individuals from sub-Saharan Africa. J Clin Microbiol 2006, 44:3781-3783.
- [10]Appaiahgari MB, Saini M, Rauthan M, Jyoti , Vrati S: Immunization with recombinant adenovirus synthesizing the secretory form of Japanese encephalitis virus envelope protein protects adenovirus-exposed mice against lethal encephalitis. Microbes Infect 2006, 8:92-104.
- [11]Sun C, Zhang Y, Feng L, Pan W, Zhang M, Hong Z, Ma X, Chen X, Chen L: Epidemiology of adenovirus type 5 neutralizing antibodies in healthy people and AIDS patients in Guangzhou, southern China. Vaccine 2011, 29:3837-3841.
- [12]Yu B, Zhou Y, Wu H, Wang Z, Zhan Y, Feng X, Geng R, Wu Y, Kong W, Yu X: Seroprevalence of neutralizing antibodies to human adenovirus type 5 in healthy adults in China. J Med Virol 2012, 84:1408-1414.
- [13]Yu B, Zhang Y, Zhan Y, Zha X, Wu Y, Zhang X, Dong Q, Kong W, Yu X: Co-expression of herpes simplex virus thymidine kinase and Escherichia coli nitroreductase by an hTERT-driven adenovirus vector in breast cancer cells results in additive anti-tumor effects. Oncol Rep 2011, 26:255-264.
- [14]Dudareva M, Andrews L, Gilbert SC, Bejon P, Marsh K, Mwacharo J, Kai O, Nicosia A, Hill AV: Prevalence of serum neutralizing antibodies against chimpanzee adenovirus 63 and human adenovirus 5 in Kenyan children, in the context of vaccine vector efficacy. Vaccine 2009, 27:3501-3504.
- [15]Abbink P, Lemckert AA, Ewald BA, Lynch DM, Denholtz M, Smits S, Holterman L, Damen I, Vogels R, Thorner AR, et al.: Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J Virol 2007, 81:4654-4663.
- [16]Zaiss AK, Machado HB, Herschman HR: The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem 2009, 108:778-790.
- [17]McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, Janes H, Defawe OD, Carter DK, Hural J, Akondy R, et al.: HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 2008, 372:1894-1905.
- [18]Slack C, Strode A, Fleischer T, Gray G, Ranchod C: Enrolling adolescents in HIV vaccine trials: reflections on legal complexities from South Africa. BMC Med Ethics 2007, 8:5. BioMed Central Full Text
- [19]Barouch DH, Kik SV, Weverling GJ, Dilan R, King SL, Maxfield LF, Clark S, Ng’ang’a D, Brandariz KL, Abbink P, et al.: International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine 2011, 29:5203-5209.
- [20]Leen AM, Christin A, Khalil M, Weiss H, Gee AP, Brenner MK, Heslop HE, Rooney CM, Bollard CM: Identification of hexon-specific CD4 and CD8 T-cell epitopes for vaccine and immunotherapy. J Virol 2008, 82:546-554.
- [21]Sun Y, Bailer RT, Rao SS, Mascola JR, Nabel GJ, Koup RA, Letvin NL: Systemic and mucosal T-lymphocyte activation induced by recombinant adenovirus vaccines in rhesus monkeys. J Virol 2009, 83:10596-10604.
- [22]Hutnick NA, Carnathan D, Demers K, Makedonas G, Ertl HC, Betts MR: Adenovirus-specific human T cells are pervasive, polyfunctional, and cross-reactive. Vaccine 2010, 28:1932-1941.
- [23]Casimiro DR, Chen L, Fu TM, Evans RK, Caulfield MJ, Davies ME, Tang A, Chen M, Huang L, Harris V, et al.: Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J Virol 2003, 77:6305-6313.
- [24]Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, et al.: Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008, 372:1881-1893.
- [25]Catanzaro AT, Koup RA, Roederer M, Bailer RT, Enama ME, Moodie Z, Gu L, Martin JE, Novik L, Chakrabarti BK, et al.: Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J Infect Dis 2006, 194:1638-1649.
- [26]Appaiahgari MB, Pandey RM, Vrati S: Seroprevalence of neutralizing antibodies to adenovirus type 5 among children in India: implications for recombinant adenovirus-based vaccines. Clin Vaccine Immunol 2007, 14:1053-1055.
PDF