期刊论文详细信息
Orphanet Journal of Rare Diseases
Possible effects of EXT2 on mesenchymal differentiation - lessons from the zebrafish
Pancras C W Hogendoorn4  Zhe Zhao2  Karel W F Scheepstra4  Carlos E de Andrea1  Malgorzata I Wiweger3 
[1] Department of Histology and Pathology, University of Navarra, Pamplona, Spain;Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK;Current address: Zebrafish Core Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland;Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
关键词: Bone tumour;    Differentiation;    Osteoblasts;    MHE/HME;    Exostosis;    Osteochondroma;    Fat;    Bone;    Heparan sulphate;    Zebrafish;   
Others  :  863234
DOI  :  10.1186/1750-1172-9-35
 received in 2013-10-18, accepted in 2014-02-10,  发布年份 2014
PDF
【 摘 要 】

Background

Mutations in the EXT genes disrupt polymerisation of heparan sulphates (HS) and lead to the development of osteochondroma, an isolated/sporadic- or a multifocal/hereditary cartilaginous bone tumour. Zebrafish (Danio rerio) is a very powerful animal model which has shown to present the same cartilage phenotype that is commonly seen in mice model and patients with the rare hereditary syndrome, Multiple Osteochondroma (MO).

Methods

Zebrafish dackel (dak) mutant that carries a nonsense mutation in the ext2 gene was used in this study. A panel of molecular, morphological and biochemical analyses was used to assess at what step bone formation is affected and what mechanisms underlie changes in the bone formation in the ext2 mutant.

Results

During bone development in the ext2-/- zebrafish, chondrocytes fail to undergo terminal differentiation; and pre-osteoblasts do not differentiate toward osteoblasts. This inadequate osteogenesis coincides with increased deposition of lipids/fats along/in the vessels and premature adipocyte differentiation as shown by biochemical and molecular markers. Also, the ext2-null fish have a muscle phenotype, i.e. muscles are shorter and thicker. These changes coexist with misshapen bones. Normal expression of runx2 together with impaired expression of osterix and its master regulator - xbp1 suggest that unfolded protein responses might play a role in MO pathogenesis.

Conclusions

Heparan sulphates are required for terminal differentiation of the cartilaginous template and consecutive formation of a scaffold that is needed for further bone development. HS are also needed for mesenchymal cell differentiation. At least one copy of ext2 is needed to maintain the balance between bone and fat lineages, but homozygous loss of the ext2 function leads to an imbalance between cartilage, bone and fat lineages. Normal expression of runx2 and impaired expression of osterix in the ext2-/- fish indicate that HS are required by osteoblast precursors for their further differentiation towards osteoblastic lineage. Lower expression of xbp1, a master regulator of osterix, suggests that HS affect the ‘unfolded protein response’, a pathway that is known to control bone formation and lipid metabolism. Our observations in the ext2-null fish might explain the musculoskeletal defects that are often observed in MO patients.

【 授权许可】

   
2014 Wiweger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725031722471.pdf 3451KB PDF download
196KB Image download
95KB Image download
138KB Image download
72KB Image download
120KB Image download
【 图 表 】

【 参考文献 】
  • [1]Kaback LA, Soung DY, Naik A, Smith N, Schwarz EM, O’Keefe RJ, Drissi H: Osterix/Sp7 regulates mesenchymal stem cell mediated endochondral ossification. J Cell Physiol 2008, 214:173-182.
  • [2]Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108:17-29.
  • [3]Mikami Y, Lee M, Irie S, Honda MJ: Dexamethasone modulates osteogenesis and adipogenesis with regulation of osterix expression in rat calvaria-derived cells. J Cell Physiol 2011, 226:739-748.
  • [4]Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H: PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004, 113:846-855.
  • [5]McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, Tufaro F: The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 1998, 19:158-161.
  • [6]Fung EB, Johnson JA, Madden J, Kim T, Harmatz P: Bone density assessment in patients with mucopolysaccharidosis: a preliminary report from patients with MPS II and VI. J Pediatr Rehabil Med 2010, 3:13-23.
  • [7]Rigante D, Caradonna P: Secondary skeletal involvement in Sanfilippo syndrome. QJM 2004, 97:205-209.
  • [8]Bovée JVMG, Heymann D, Wuyts W: Osteochondroma. In WHO Classification of Tumours of Soft Tissue and Bone. Edited by Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F. Lyon: IARC; 2013:250-251.
  • [9]Wuyts W, Bovée JVMG, Hogendoorn PCW: Multiple Osteochondromas. In WHO Classification of Tumours of Soft Tissue and Bone. Edited by Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F. Lyon: IARC; 2013:384-385.
  • [10]Lemos MC, Kotanko P, Christie PT, Harding B, Javor T, Smith C, Eastell R, Thakker RV: A novel EXT1 splice site mutation in a kindred with hereditary multiple exostosis and osteoporosis. J Clin Endocrinol Metab 2005, 90:5386-5392.
  • [11]Schick F, Duda SH, Lutz O, Claussen CD: Lipids in bone tumors assessed by magnetic resonance: chemical shift imaging and proton spectroscopy in vivo. Anticancer Res 1996, 16:1569-1574.
  • [12]Darilek S, Wicklund C, Novy D, Scott A, Gambello M, Johnston D, Hecht J: Hereditary multiple exostosis and pain. J Pediatr Orthop 2005, 25:369-376.
  • [13]Hosalkar H, Greenberg J, Gaugler RL, Garg S, Dormans JP: Abnormal scarring with keloid formation after osteochondroma excision in children with multiple hereditary exostoses. J Pediatr Orthop 2007, 27:333-337.
  • [14]Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M: Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Dev Dyn 2013, 242:1021-1032.
  • [15]Dooley K, Zon L: Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 2000, 10:252-256.
  • [16]Lee J-S, der HS V, Rusch MA, Stringer SE, Stickney HL, Talbot WS, Geisler R, Nüsslein-Volhard C, Selleck SB, Chien CB, Roehl H: Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 2004, 44:947-960.
  • [17]Clément A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, Chien CB, Roehl H: Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 2008, 4:e1000136.
  • [18]Wiweger MI, Avramut CM, de Andrea CE, Prins FA, Koster AJ, Ravelli RB, Hogendoorn PC: Cartilage ultrastructure in proteoglycan-deficient zebrafish mutants brings to light new candidate genes for human skeletal disorders. J Pathol 2011, 223:531-542.
  • [19]Wiweger MI, Zhao Z, van Merkesteyn RJ, Roehl HH, Hogendoorn PC: HSPG-deficient zebrafish uncovers dental aspect of multiple osteochondromas. PLoS One 2012, 7:e29734.
  • [20]de Andrea CE, Prins FA, Wiweger MI, Hogendoorn PC: Growth plate regulation and osteochondroma formation: insights from tracing proteoglycans in zebrafish models and human cartilage. J Pathol 2011, 224:160-168.
  • [21]Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995, 203:253-310.
  • [22]Spoorendonk KM, Peterson-Maduro J, Renn J, Trowe T, Kranenbarg S, Winkler C, Schulte-Merker S: Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 2008, 135:3765-3774.
  • [23]Li N, Felber K, Elks P, Croucher P, Roehl HH: Tracking gene expression during zebrafish osteoblast differentiation. Dev Dyn 2009, 238:459-466.
  • [24]Thisse C, Thisse B: High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 2008, 3:59-69.
  • [25]de Jong M, Rauwerda H, Bruning O, Verkooijen J, Spaink HP, Breit TM: RNA isolation method for single embryo transcriptome analysis in zebrafish. BMC Res Notes 2010, 3:73. BioMed Central Full Text
  • [26]Hameetman L, Rozeman LB, Lombaerts M, Oosting J, Taminiau AHM, Cleton-Jansen AM, Bovée JV, Hogendoorn PC: Peripheral chondrosarcoma progression is accompanied by decreased Indian Hedgehog signalling. J Pathol 2006, 209:501-511.
  • [27]Takada I, Kouzmenko AP, Kato S: Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 2009, 5:442-447.
  • [28]Schilling TF, Kimmel CB: Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 1997, 124:2945-2960.
  • [29]Flynn EJ III, Trent CM, Rawls JF: Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res 2009, 50:1641-1652.
  • [30]Li N, Kelsh RN, Croucher P, Roehl HH: Regulation of neural crest cell fate by the retinoic acid and Pparg signalling pathways. Development 2010, 137:389-394.
  • [31]Tohmonda T, Miyauchi Y, Ghosh R, Yoda M, Uchikawa S, Takito J, Morioka H, Nakamura M, Iwawaki T, Chiba K, Toyama Y, Urano F, Horiuchi K: The IRE1alpha-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep 2011, 12:451-457.
  • [32]Eames BF, Yan YL, Swartz ME, Levic DS, Knapik EW, Postlethwait JH, Kimmel CB: Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation. PLoS Genet 2011, 7:e1002246.
  • [33]Holmborn K, Habicher J, Kasza Z, Eriksson AS, Filipek-Gorniok B, Gopal S, Couchman JR, Ahlberg PE, Wiweger M, Spillmann D, Kreuger J, Ledin J: On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis. J Biol Chem 2012, 287:33905-33916.
  • [34]Yelick PC, Schilling TF: Molecular dissection of craniofacial development using zebrafish. Crit Rev Oral Biol Med 2002, 13:308-322.
  • [35]Hammond CL, Schulte-Merker S: Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling. Development 2009, 136:3991-4000.
  • [36]Rosen CJ, Bouxsein ML: Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2006, 2:35-43.
  • [37]Holley RJ, Pickford CE, Rushton G, Lacaud G, Gallagher JT, Kouskoff V, Merry CL: Influencing hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides. J Biol Chem 2011, 286:6241-6252.
  • [38]de Andrea CE, Wiweger MI, Bovee JV, Romeo S, Hogendoorn PC: Peripheral chondrosarcoma progression is associated with increased type X collagen and vascularisation. Virchows Arch 2012, 460:95-102.
  • [39]Cousin W, Fontaine C, Dani C, Peraldi P: Hedgehog and adipogenesis: fat and fiction. Biochimie 2007, 89:1447-1453.
  • [40]Ek ET, Slavin JL, Blackney MC, Powell GJ: Parosteal lipoma associated with an underlying osteochondroma arising from the hallux. Skeletal Radiol 2007, 36:689-692.
  • [41]Sakai H, Tamai K, Iwamoto A, Saotome K: Para-articular chondroma and osteochondroma of the infrapatellar fat pad: a report of three cases. Int Orthop 1999, 23:114-117.
  • [42]Jones KB, Datar M, Ravichandran S, Jin H, Jurrus E, Whitaker R, Capecchi MR: Toward an understanding of the short bone phenotype associated with multiple osteochondromas. J Orthop Res 2013, 31:651-657.
  文献评价指标  
  下载次数:7次 浏览次数:29次