期刊论文详细信息
Molecular Cytogenetics
Copy number variants prioritization after array-CGH analysis – a cohort of 1000 patients
Joana Barbosa de Melo2  Jorge Saraiva1  Joaquim Sá1  Ana Beleza1  Fabiana Ramos1  Margarida Venâncio1  Lina Ramos5  Francisco Caramelo5  Lúcia Simões4  Patrícia Paiva4  Cláudia Pais4  Nuno Lavoura4  Marta Pinto4  Alexandra Mascarenhas4  Ana Jardim4  José Ferrão4  Luís Miguel Pires4  Eunice Matoso3  Susana Isabel Ferreira4  Isabel Marques Carreira2 
[1] Serviço de Genética Médica, Hospital Pediátrico – Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal;CNC, IBILI – Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal;Laboratório de Citogenética, Hospital Pediátrico de Coimbra, Coimbra, Portugal;Laboratório de Citogenética e Genómica – Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, Coimbra, 3000-354, Portugal;Laboratório de Bioestatística e Informática Médica, IBILI – Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
关键词: Autism spectrum disorders;    Learning difficulties;    Multiple congenital anomalies;    Intellectual disability;    Copy number variation (CNV) classification;    Array comparative genomic hybridization (array-CGH);   
Others  :  1235198
DOI  :  10.1186/s13039-015-0202-z
 received in 2015-08-10, accepted in 2015-12-17,  发布年份 2015
PDF
【 摘 要 】

Background

Array-based comparative genomic hybridization has been assumed to be the first genetic test offered to detect genomic imbalances in patients with unexplained intellectual disability with or without dysmorphisms, multiple congenital anomalies, learning difficulties and autism spectrum disorders.

Our study contributes to the genotype/phenotype correlation with the delineation of laboratory criteria which help to classify the different copy number variants (CNVs) detected. We clustered our findings into five classes ranging from an imbalance detected in a microdeletion/duplication syndrome region (class I) to imbalances that had previously been reported in normal subjects in the Database of Genomic Variants (DGV) and thus considered common variants (class IV).

Results

All the analyzed 1000 patients had at least one CNV independently of its clinical significance. Most of them, as expected, were alterations already reported in the DGV for normal individuals (class IV) or without known coding genes (class III-B). In approximately 14 % of the patients an imbalance involving known coding genes, but with partially overlapping or low frequency of CNVs described in the DGV was identified (class IIIA). In 10.4 % of the patients a pathogenic CNV that explained the phenotype was identified consisting of: 40 class I imbalances, 44 class II de novo imbalances and 21 class II X-chromosome imbalances in male patients. In 20 % of the patients a familial pathogenic or potentially pathogenic CNV, consisting of inherited class II imbalances, was identified that implied a family evaluation by the clinical geneticists.

Conclusions

As this interpretation can be sometimes difficult, particularly if it is not possible to study the parents, using the proposed classification we were able to prioritize the multiple imbalances that are identified in each patient without immediately having to classify them as pathogenic or benign.

【 授权许可】

   
2015 Carreira et al.

【 预 览 】
附件列表
Files Size Format View
20160104083547105.pdf 1028KB PDF download
Fig. 4. 23KB Image download
Fig. 3. 18KB Image download
Fig. 2. 8KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010; 86:749-764.
  • [2]Friedman JM, Baross A, Delaney AD, Ally A, Arbour L, Armstrong L, Asano J, Bailey DK, Barber S, Birch P, Brown-John M, Cao M, Chan S, Charest DL, Farnoud N, Fernandes N, Flibotte S, Go A, Gibson WT, Holt RA, Jones SJ, Kennedy GC, Krzywinski M, Langlois S, Li HI, McGillivray BC, Nayar T, Pugh TJ, Rajcan-Separovic E, Schein JE et al.. Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet. 2006; 79:500-513.
  • [3]Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA, Bacino CA, Stankiewicz P, Ou Z, Chinault AC, Beaudet AL, Lupski JR, Cheung SW, Ward PA. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One. 2007; 2: Article ID e327
  • [4]Rodríguez-Revenga L, Vallespín E, Madrigal I, Palomares M, Mur A, García-Miñaur S et al.. A parallel study of different array-CGH platforms in a set of Spanish patients with developmental delay and intellectual disability. Gene. 2013; 521:82-86.
  • [5]D'Arrigo S, Gavazzi F, Alfei E, Zuffardi O, Montomoli C, Corso B, Buzzi E, Sciacca FL, Bulgheroni S, Riva D, Pantaleoni C. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children. J Child Neurol 2015.
  • [6]Coutton C, Dieterich K, Satre V, Vieville G, Amblard F, David M, Cans C, Jouk PS, Devillard F. Array-CGH in children with mild intellectual disability: a population-based study. Eur J Pediatr. 2015; 174:75-83.
  • [7]Nicholl J, Waters W, Mulley JC, Suwalski S, Brown S, Hull Y, Barnett C, Haan E, Thompson EM, Liebelt J, Mcgregor L, Harbord MG, Entwistle J, Munt C, White D, Chitti A, Baulderstone D, Ketteridge D, Consortium AR, Friend K, Bain SM, Yu S. Cognitive deficit and autism spectrum disorders: prospective diagnosis by array CGH. Pathology. 2014; 46:41-45.
  • [8]Gijsbers AC, Schoumans J, Ruivenkamp CA. Interpretation of array comparative genome hybridization data: a major challenge. Cytogenet Genome Res. 2011; 135:222-227.
  • [9]Slavotinek AM. Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet. 2008; 124:1-17.
  • [10]Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Coppinger J, Ballif BC. Theidentification of microdeletion syndromes and other chromosome abnormalities: Cytogenetic methods of the past, new technologies for the future. Am J Med Genet Part C Semin Med Genet. 2007; 145:335-345.
  • [11]Choucair N, Ghoch JA, Corbani S, Cacciagli P, Mignon-Ravix C, Salem N, Jalkh N, El Sabbagh S, Fawaz A, Ibrahim T, Villard L, Mégarbané A, Chouery E. Contribution of copy number variants (CNVs) to congenital, unexplained intellectual and developmental disabilities in Lebanese patients. Mol Cytogenet. 2015; 8:26. BioMed Central Full Text
  • [12]Shoukier M, Klein N, Auber B, Wickert J, Schr¨oder J, Zoll B, Burfeind P, Bartels I, Alsat EA, Lingen M, Grzmil P, Schulze S, Keyser J, Weise D, Borchers M, Hobbiebrunken E, Robl M, Gartner J, Brockmann K, Zirn B. Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet. 2013; 83:53-65.
  • [13]Ahn JW, Bint S, Bergbaum A, Mann K, Hall RP, Ogilvie CM. Array CGH as a first line diagnostic test in place of karyotyping for postnatal referrals - results from four years’ clinical application for over 8,700 patients. Mol Cytogenet. 2013; 6:16. BioMed Central Full Text
  • [14]Melo JB, Estevinho A, Saraiva J, Ramos L, Carreira IM. Cutis Aplasia as a clinical hallmark for the syndrome associated with 19q13.11 deletion: the possible role for UBA2 gene. Mol Cytogenet. 2015; 8:21. BioMed Central Full Text
  • [15]Bijlsma EK, Gijsbers AC, Schuurs-Hoeijmakers JH, van Haeringen A, Fransen van de Putte DE, Anderlid BM, Lundin J, Lapunzina P, Pérez Jurado LA, Delle Chiaie B, Loeys B, Menten B, Oostra A, Verhelst H, Amor DJ, Bruno DL, van Essen AJ, Hordijk R, Sikkema-Raddatz B, Verbruggen KT, Jongmans MC, Pfundt R, Reeser HM, Breuning MH, Ruivenkamp CA. Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals. Eur J Med Genet. 2009; 52:77-87.
  • [16]Tan TY, Collins A, James PA, McGillivray G, Stark Z, Gordon CT, Leventer RJ, Pope K, Forbes R, Crolla JA, Ganesamoorthy D, Burgess T, Bruno DL, Slater HR, Farlie PG, Amor DJ. Phenotypic variability of distal 22q11.2 copy number abnormalities. Am J Med Genet A. 2011; 155:1623-1633.
  • [17]Matoso E, Melo JB, Ferreira SI, Jardim A, Castelo TM, Weise A, Carreira IM. Insertional translocation leading to a 4q13 duplication including the EPHA5 gene in two siblings with attention-deficit hyperactivity disorder. Am J Med Genet A. 2013; 161:1923-1928.
  • [18]Di Gregorio E, Savin E, Biamino E, Belligni EF, Naretto VG, D’Alessandro G, Gai G, Fiocchi F, Calcia A, Mancini C, Giorgio E, Cavalieri S, Talarico F, Pappi P, Gandione M, Grosso M, Asnaghi V, Restagno G, Mandrile G, Botta G, Silengo MC, Grosso E, Ferrero GB, Brusco A. Large cryptic genomic rearrangements with apparently normal karyotypes detected by array-CGH. Mol Cytogenet. 2014; 7:82. BioMed Central Full Text
  • [19]Menten B, Maas N, Thienpont B, Buysse K, Vandesompele J, Melotte C, de Ravel T, Van Vooren S, Balikova I, Backx L, Janssens S, De Paepe A, De Moor B, Moreau Y, Marynen P, Fryns JP, Mortier G, Devriendt K, Speleman F, Vermeesch JR. Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. J Med Genet. 2006; 43:625-633.
  文献评价指标  
  下载次数:46次 浏览次数:4次