期刊论文详细信息
Population Health Metrics
A methodological framework for the improved use of routine health system data to evaluate national malaria control programs: evidence from Zambia
Thomas P Eisele2  Richard W Steketee1  Thomas A Smith4  Joseph Keating2  Mulakwo Kamuliwo3  Hawela B Moonga3  Mercy M Ingwe3  Busiku Hamainza3  Penelope Vounatsou4  John M Miller1  Joshua Yukich2  Adam Bennett2 
[1] PATH Malaria Control and Evaluation Partnership in Africa (MACEPA), Lusaka, Zambia;Center for Applied Malaria Research and Evaluation, Tulane University of Public Health and Tropical Medicine, 1440 Canal St., Suite 2200, New Orleans 70112, LA, USA;National Malaria Control Centre, Ministry of Health, Lusaka, Zambia;University of Basel, Basel, Switzerland
关键词: Health management information systems (HMIS);    Insecticide-treated nets;    Integrated Nested Laplace Approximation (INLA);    Evaluation;    Malaria;   
Others  :  1132052
DOI  :  10.1186/s12963-014-0030-0
 received in 2013-10-13, accepted in 2014-10-13,  发布年份 2014
PDF
【 摘 要 】

Background

Due to challenges in laboratory confirmation, reporting completeness, timeliness, and health access, routine incidence data from health management information systems (HMIS) have rarely been used for the rigorous evaluation of malaria control program scale-up in Africa.

Methods

We used data from the Zambia HMIS for 2009–2011, a period of rapid diagnostic and reporting scale-up, to evaluate the association between insecticide-treated net (ITN) program intensity and district-level monthly confirmed outpatient malaria incidence using a dose–response national platform approach with district-time units as the unit of analysis. A Bayesian geostatistical model was employed to estimate longitudinal district-level ITN coverage from household survey and programmatic data, and a conditional autoregressive model (CAR) was used to impute missing HMIS data. The association between confirmed malaria case incidence and ITN program intensity was modeled while controlling for known confounding factors, including climate variability, reporting, testing, treatment-seeking, and access to health care, and additionally accounting for spatial and temporal autocorrelation.

Results

An increase in district level ITN coverage of one ITN per household was associated with an estimated 27% reduction in confirmed case incidence overall (incidence rate ratio (IRR): 0 · 73, 95% Bayesian Credible Interval (BCI): 0 · 65–0 · 81), and a 41% reduction in areas of lower malaria burden.

Conclusions

When improved through comprehensive parasitologically confirmed case reporting, HMIS data can become a valuable tool for evaluating malaria program scale-up. Using this approach we provide further evidence that increased ITN coverage is associated with decreased malaria morbidity and use of health services for malaria illness in Zambia. These methods and results are broadly relevant for malaria program evaluations currently ongoing in sub-Saharan Africa, especially as routine confirmed case data improve.

【 授权许可】

   
2014 Bennett et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150303141830599.pdf 2366KB PDF download
Figure 4. 68KB Image download
Figure 3. 86KB Image download
Figure 2. 102KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]A research agenda for malaria eradication: monitoring, evaluation, and surveillance PLoS Med 2011, 8(1):e1000400.
  • [2]Rowe AK, Kachur SP, Yoon SY, Lynch M, Slutsker L, Steketee RW: Caution is required when using health facility-based data to evaluate the health impact of malaria control efforts in Africa. Malar J 2009, 8:209. BioMed Central Full Text
  • [3]Gething PW, Noor AM, Goodman CA, Gikandi PW, Hay SI, Sharif SK, Atkinson PM, Snow RW: Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics. BMC Med 2007, 5:37. BioMed Central Full Text
  • [4]Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phinedela T, Morse AP, Palmer TN: Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 2006, 439(7076):576-579.
  • [5]Chanda E, Coleman M, Kleinschmidt I, Hemingway J, Hamainza B, Masaninga F, Chanda-Kapata P, Baboo KS, Dürrheim DN, Coleman M: Impact assessment of malaria vector control using routine surveillance data in Zambia: implications for monitoring and evaluation. Malar J 2012, 11:437. BioMed Central Full Text
  • [6]Victora CG, Schellenberg JA, Huicho L, Amaral J, El Arifeen S, Pariyo G, Manzi F, Scherpbier RW, Bryce J, Habicth JP: Context matters: interpreting impact findings in child survival evaluations. Health Policy Plan 2005, 20(Suppl 1):i18-i31.
  • [7]Victora CG, Black RE, Boerma JT, Bryce J: Measuring impact in the Millennium Development Goal era and beyond: a new approach to large-scale effectiveness evaluations. Lancet 2011, 377(9759):85-95.
  • [8]Graves PM, Osgood DE, Thomson MC, Sereke K, Araia A, Zerom M, Ceccato P, Bell M, Del Corral J, Ghebreselassie S, Brantly EP, Ghebremeskel T: Effectiveness of malaria control during changing climate conditions in Eritrea, 1998–2003. Trop Med Int Health 2008, 13(2):218-228.
  • [9][www.nmcc.org.zm] webcite Zambia Ministry of Health, National Malaria Control Center: Zambia National Malaria Indicator Survey 2010. Lusaka, Zambia: 2011. Available at: .
  • [10]Chizema-Kawesha E, Miller J, Steketee RW, Mukonka C, Mohamed AD, Miti SK, Campbell CC: Scaling up malaria control in Zambia: progress and impact 2005–2008. Am J Trop Med Hyg 2010, 83(3):480-488.
  • [11]Yukich JO, Bennett A, Albertini A, Incardona S, Moonga H, Chisha Z, Hamainza B, Miller JM, Keating J, Eisele TP, Bell D: Reductions in artemisinin-based combination therapy consumption after the nationwide scale up of routine malaria rapid diagnostic testing in Zambia. Am J Trop Med Hyg 2012, 87(3):437-446.
  • [12][http:/ / www.strobe-statement.org/ fileadmin/ Strobe/ uploads/ checklists/ STROBE_checklist_v4_cross-sectional .pdf] webcite STROBE: 2007. [cited 2013 August]; Accessed online at: .
  • [13]Eisele TP, Miller JM, Moonga HB, Hamainza B, Hutchinson P, Keating J: Malaria infection and anemia prevalence in Zambia's Luangwa District: an area of near-universal insecticide-treated mosquito net coverage. Am J Trop Med Hyg 2011, 84(1):152-157.
  • [14][http://earlywarning.usgs.gov/fews/] webcite United States Geological Survey: Famine Early Warning System Network. [accessed 2011 January]; Accessed online at: .
  • [15][https://lpdaac.usgs.gov/products/modis_products_table] webcite United States Geological Survey/National Aeronautics and Space Administration: The Moderate Resolution Imaging Spectroradiometer (MODIS). . [cited 2011 January]; Accessed online at: .
  • [16]Mabaso ML, Craig M, Vounatsou P, Smith T: Towards empirical description of malaria seasonality in southern Africa: the example of Zimbabwe. Trop Med Int Health 2005, 10(9):909-918.
  • [17][http://www.who.int/kms/initiatives/accessmod/en/index.html] webcite World Health Organization: AccessMod 3.0. In [accessed 2012 June]; Accessed online at: .
  • [18]Alegana VA, Wright JA, Pentrina U, Noor AM, Snow RW, Atikinson PM: Spatial modelling of healthcare utilisation for treatment of fever in Namibia. Int J Health Geogr 2012, 11:6. BioMed Central Full Text
  • [19]Zambia Demographic and Health Survey 2007. Macro International, Calverton,MD; 2009.
  • [20]Zambia 2011 Household Survey Report. Population Services International, Washington DC; 2013.
  • [21]Camargo LM, Noronha E, Salcedo JM, Dutra AP, Krieger H, da Silva LH P, Camargo EP: The epidemiology of malaria in Rondonia (Western Amazon region, Brazil): study of a riverine population. Acta Trop 1999, 72(1):1-11.
  • [22]Rue H, Martino S, Chopin N: Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. J R Stat Soc, Series B 2009, 71(2):319-392.
  • [23][www.r-inla.org] webcite Martino S, Rue H: Implementing approximate Bayesian inference using integrated nested laplace approximation: a manual for the inla program (R package). In .[Accessed 2012 January]; Accessed online at .
  • [24]Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A: Bayesian measures of model complexity and fit. J R Stat Soc, Series B 2002, 64(4):583-639.
  • [25]Lengeler C: Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2004, 2:CD000363.
  • [26]Otten M, Aregawi M, Were W, Karema C, Medin A, Bekele W, Jima D, Gausi K, Komatsu R, Korenromp E, Low-Beer D, Grabowsky M: Initial evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J 2009, 8:14. BioMed Central Full Text
  • [27]Bhattarai A, Ali S, Kachur SP, Mårtensson A, Abbas AK, Khatib R, Al-Mafazy AW, Ramsan M, Rotllant G, Gerstenmaier JF, Molteni F, Abdulla S, Montgomery SM, Kaneko A, Björkman A: Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLoS Med 2007, 4(11):e309.
  • [28]Mabaso ML, Vounatsou P, Midzi S, Da Silva J, Smith T: Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe. Int J Health Geogr 2006, 5:20. BioMed Central Full Text
  • [29]Noor AM, Alegana VA, Patil AP, Snow RW: Predicting the unmet need for biologically targeted coverage of insecticide-treated nets in Kenya. Am J Trop Med Hyg 2010, 83(4):854-860.
  • [30]Hu W, Clements A, Williams G, Tong S, Mengersen K: Bayesian spatiotemporal analysis of socio-ecologic drivers of Ross River virus transmission in Queensland, Australia. Am J Trop Med Hyg 2010, 83(3):722-728.
  • [31]Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, Bousema T, Drakeley CJ, Ferguson NM, Basáñez MG, Ghani AC: Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med 2010, 7(8):e1000324.
  • [32]Smith DL, Hay SI, Noor AM, Snow RW: Predicting changing malaria risk after expanded insecticide-treated net coverage in Africa. Trends Parasitol 2009, 25(11):511-516.
  • [33]Chitnis N, Schapira A, Smith T, Steketee R: Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg 2010, 83(2):230-240.
  • [34]Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, Rehman A, Morgan J, Barnes KG, Hemingway J: Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci 2012, 109(47):19063-19070.
  • [35]Roca-Feltrer A, Kwizombe CJ, Sanjoaquin MA, Sesay SS, Faragher B, Harrison J, Geukers K, Kabuluzi S, Mathanga DP, Molyneux E, Chagomera M, Taylor T, Molyneux M, Heyderman RS: Lack of decline in childhood malaria, Malawi, 2001–2010. Emerg Infect Dis 2012, 18(2):272-278.
  • [36][www.who.int/malaria] webcite World Health Organization (WHO): World Malaria Report 2010. Geneva, Switzerland: 2010. Available at: .
  • [37]Over M, Bakote'e B, Velayudhan R, Wilikai P, Graves PM: Impregnated nets or DDT residual spraying? Field effectiveness of malaria prevention techniques in Solomon Islands, 1993–1999. Am J Trop Med Hyg 2004, 71(2 Suppl):214-223.
  • [38]Rowe AK, Steketee RW, Arnold F, Wardlaw T, Basu S, Bakyaita N, Lama M, Winston CA, Lynch M, Cibulskis RE, Shibuya K, Ratcliffe AA, Nahlen BL: Viewpoint: evaluating the impact of malaria control efforts on mortality in sub-Saharan Africa. Trop Med Int Health 2007, 12(12):1524-1539.
  文献评价指标  
  下载次数:20次 浏览次数:22次