Particle and Fibre Toxicology | |
Wolbachia strain wAlbB confers both fitness costs and benefit on Anopheles stephensi | |
Zhiyong Xi2  Fengrui Zhang1  David Bevins1  Michael J McFadden1  Deepak Joshi1  | |
[1] Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong 510080, China | |
关键词: Fitness; Anopheles; Malaria; Wolbachia; | |
Others : 1183546 DOI : 10.1186/1756-3305-7-336 |
|
received in 2014-04-11, accepted in 2014-07-13, 发布年份 2014 | |
![]() |
【 摘 要 】
Background
Wolbachia is a maternally transmitted intracellular bacterium that is estimated to infect up to 65% of insect species, but it is not naturally present in Anopheles malaria vectors. Wolbachia-based strategies for malaria vector control can be developed either through population replacement to reduce vectorial capacity or through population suppression to reduce the mosquito population. We have previously generated An. stephensi mosquitoes carrying a stable wAlbB Wolbachia infection and have demonstrated their ability to invade wild-type laboratory populations and confer resistance to Plasmodium on these populations.
Methods
We assessed wAlbB-associated fitness by comparing the female fecundity, immature development and survivorship, body size, male mating competiveness, and adult longevity of the infected An. stephensi to that of wild-type mosquitoes.
Results
We found that wAlbB reduced female fecundity and caused a minor decrease in male mating competiveness. We also observed that wAlbB increased the life span of both male and female mosquitoes when they were maintained solely on sugar meals; however, there was no impact on the life span of blood-fed females. In addition, wAlbB did not influence either immature development and survivorship or adult body sizes.
Conclusions
These results provide significant support for developing Wolbachia-based strategies for malaria vector control.
【 授权许可】
2014 Joshi et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150520080429310.pdf | 587KB | ![]() |
|
Figure 4. | 144KB | Image | ![]() |
Figure 3. | 65KB | Image | ![]() |
Figure 2. | 74KB | Image | ![]() |
Figure 1. | 73KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH: How many species are infected with Wolbachia?–A statistical analysis of current data. FEMS Microbiol Lett 2008, 281(2):215-220.
- [2]Werren JH, Baldo L, Clark ME: Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 2008, 6(10):741-751.
- [3]Kittayapong P, Baisley KJ, Baimai V, O’Neill SL: Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 2000, 37(3):340-345.
- [4]Sinkins SP: Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol 2004, 34(7):723-729.
- [5]Xi Z, Khoo CC, Dobson SL: Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005, 310(5746):326-328.
- [6]Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL: Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476(7361):454-457.
- [7]Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z: Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 2013, 340(6133):748-751.
- [8]Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL: Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 1999, 29(2):153-160.
- [9]Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 2009, 139(7):1268-1278.
- [10]Bian G, Xu Y, Lu P, Xie Y, Xi Z: The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 2010, 6(4):e1000833.
- [11]Kambris Z, Cook PE, Phuc HK, Sinkins SP: Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 2009, 326(5949):134-136.
- [12]Teixeira L, Ferreira A, Ashburner M: The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 2008, 6(12):e2.
- [13]Glaser RL, Meola MA: The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One 2010, 5(8):e11977.
- [14]Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffmann AA: The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011, 476(7361):450-453.
- [15]Hoffmann AA, Turelli M, Harshman LG: Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 1990, 126(4):933-948.
- [16]Dobson SL, Marsland EJ, Rattanadechakul W: Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 2002, 160(3):1087-1094.
- [17]Blagrove MS, Arias-Goeta C, Di Genua C, Failloux AB, Sinkins SP: A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits Chikungunya virus. PLoS Negl Trop Dis 2013, 7(3):e2152.
- [18]McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O’Neill SL: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 2009, 323(5910):141-144.
- [19]Min KT, Benzer S: Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A 1997, 94(20):10792-10796.
- [20]Atyame CM, Pasteur N, Dumas E, Tortosa P, Tantely ML, Pocquet N, Licciardi S, Bheecarry A, Zumbo B, Weill M, Duron O: Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the islands of the south-western Indian Ocean. PLoS Negl Trop Dis 2011, 5(12):e1440.
- [21]Laven H: Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 1967, 216:383-384.
- [22]Brelsfoard CL, Sechan Y, Dobson SL: Interspecific hybridization yields strategy for South Pacific filariasis vector elimination. PLoS Negl Trop Dis 2008, 2(1):e129.
- [23]Styer LM, Meola MA, Kramer LD: West Nile virus infection decreases fecundity of Culex tarsalis females. J Med Entomol 2007, 44(6):1074-1085.
- [24]Arunachalam N, Curtis CF: Integration of radiation with cytoplasmic incompatibility for genetic control in the Culex pipiens complex (Diptera: Culicidae). J Med Entomol 1985, 22(6):648-653.
- [25]McMeniman CJ, Hughes GL, O’Neill SL: A Wolbachia symbiont in Aedes aegypti disrupts mosquito egg development to a greater extent when mosquitoes feed on nonhuman versus human blood. J Med Entomol 2011, 48(1):76-84.
- [26]Caragata EP, Rances E, O’Neill SL, McGraw EA: Competition for Amino Acids Between Wolbachia and the Mosquito Host, Aedes aegypti. Microb Ecol 2013, 67(1):205-218.
- [27]DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, Barillas-Mury C: Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 2007, 104(7):2121-2126.
- [28]McMeniman CJ, O’Neill SL: A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis 2010, 4(7):e748.
- [29]Islam MS, Dobson SL: Wolbachia effects on Aedes albopictus (Diptera: Culicidae) immature survivorship and development. J Med Entomol 2006, 43(4):689-695.
- [30]Crain PR, Mains JW, Suh E, Huang Y, Crowley PH, Dobson SL: Wolbachia infections that reduce immature insect survival: predicted impacts on population replacement. BMC Evol Biol 2011, 11:290. BioMed Central Full Text
- [31]Gavotte L, Mercer DR, Stoeckle JJ, Dobson SL: Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level. J Invertebr Pathol 2010, 105(3):341-346.
- [32]Gavotte L, Mercer DR, Vandyke R, Mains JW, Dobson SL: Wolbachia infection and resource competition effects on immature Aedes albopictus (Diptera: Culicidae). J Med Entomol 2009, 46(3):451-459.
- [33]Xue RD, Barnard DR, Muller GC: Effects of body size and nutritional regimen on survival in adult Aedes albopictus (Diptera: Culicidae). J Med Entomol 2010, 47(5):778-782.
- [34]Ponlawat A, Harrington LC: Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti. Am J Trop Med Hyg 2009, 80(3):395-400.
- [35]Yeap HL, Endersby NM, Johnson PH, Ritchie SA, Hoffmann AA: Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. Am J Trop Med Hyg 2013, 89(1):78-92.
- [36]Vezilier J, Nicot A, Gandon S, Rivero A: Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum. Malar J 2010, 9:379. BioMed Central Full Text
- [37]Xi Z, Khoo CC, Dobson SL: Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc Biol Sci 2006, 273(1592):1317-1322.
- [38]Barbieri M, Bonafe M, Franceschi C, Paolisso G: Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 2003, 285(5):E1064-E1071.
- [39]Ikeya T, Broughton S, Alic N, Grandison R, Partridge L: The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila. Proc Biol Sci 2009, 276(1674):3799-3807.