期刊论文详细信息
Molecular Pain
Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura
Yu-Qing Cao1  Gina M Story1  Ajay Dhaka2  Shuyang Li1  Dongyue Huang1 
[1] Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA;Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
关键词: Transient receptor potential channel;    Dural afferent neuron;    Trigeminal ganglion;    Migraine;    Headache;   
Others  :  863384
DOI  :  10.1186/1744-8069-8-66
 received in 2012-04-12, accepted in 2012-08-18,  发布年份 2012
PDF
【 摘 要 】

Background

Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons.

Methods

We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG.

Results and conclusions

We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology.

【 授权许可】

   
2012 Huang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725042239911.pdf 1615KB PDF download
44KB Image download
100KB Image download
88KB Image download
73KB Image download
70KB Image download
97KB Image download
11KB Image download
89KB Image download
【 图 表 】

【 参考文献 】
  • [1]Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR: Neurobiology of migraine. Neuroscience 2009, 161:327-341.
  • [2]Moskowitz MA: Pathophysiology of headache–past and present. Headache 2007, 47(Suppl 1):S58-S63.
  • [3]Strassman AM, Raymond SA, Burstein R: Sensitization of meningeal sensory neurons and the origin of headaches. Nature 1996, 384:560-564.
  • [4]Basbaum AI, Bautista DM, Scherrer G, Julius D: Cellular and molecular mechanisms of pain. Cell 2009, 139:267-284.
  • [5]Patapoutian A, Tate S, Woolf CJ: Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 2009, 8:55-68.
  • [6]Shimizu T, Toriumi H, Sato H, Shibata M, Nagata E, Gotoh K, Suzuki N: Distribution and origin of TRPV1 receptor-containing nerve fibers in the dura mater of rat. Brain Res 2007, 1173:84-91.
  • [7]Bove GM, Moskowitz MA: Primary afferent neurons innervating guinea pig dura. J Neurophysiol 1997, 77:299-308.
  • [8]Akerman S, Kaube H, Goadsby PJ: Vanilloid type 1 receptors (VR1) on trigeminal sensory nerve fibres play a minor role in neurogenic dural vasodilatation, and are involved in capsaicin-induced dural dilation. Br J Pharmacol 2003, 140:718-724.
  • [9]Lambert GA, Davis JB, Appleby JM, Chizh BA, Hoskin KL, Zagami AS: The effects of the TRPV1 receptor antagonist SB-705498 on trigeminovascular sensitisation and neurotransmission. Naunyn Schmiedebergs Arch Pharmacol 2009, 380:311-325.
  • [10]Summ O, Holland PR, Akerman S, Goadsby PJ: TRPV1 receptor blockade is ineffective in different in vivo models of migraine. Cephalalgia 2011, 31:172-180.
  • [11]Edelmayer RM, Le LN, Yan J, Wei X, Nassini R, Materazzi S, Preti D, Appendino G, Geppetti P, Dodick DW, Vanderah TW, Porreca F, Dussor G: Activation of TRPA1 on dural afferents: A potential mechanism of headache pain. Pain 2012, 153:1949-1958.
  • [12]Kunkler PE, Ballard CJ, Oxford GS, Hurley JH: TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain 2011, 152:38-44.
  • [13]Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andre E, Preti D, Avonto C, et al.: The 'headache tree' via umbellulone and TRPA1 activates the trigeminovascular system. Brain 2011, 135:376-390.
  • [14]Amir R, Devor M: Chemically mediated cross-excitation in rat dorsal root ganglia. J Neurosci 1996, 16:4733-4741.
  • [15]Devor M, Wall PD: Cross-excitation in dorsal root ganglia of nerve-injured and intact rats. J Neurophysiol 1990, 64:1733-1746.
  • [16]Oh EJ, Weinreich D: Chemical communication between vagal afferent somata in nodose Ganglia of the rat and the Guinea pig in vitro. J Neurophysiol 2002, 87:2801-2807.
  • [17]Xu GY, Zhao ZQ: Cross-inhibition of mechanoreceptive inputs in dorsal root ganglia of peripheral inflammatory cats. Brain Res 2003, 970:188-194.
  • [18]Huang LY, Neher E: Ca(2+)-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron 1996, 17:135-145.
  • [19]Matsuka Y, Neubert JK, Maidment NT, Spigelman I: Concurrent release of ATP and substance P within guinea pig trigeminal ganglia in vivo. Brain Res 2001, 915:248-255.
  • [20]Neubert JK, Maidment NT, Matsuka Y, Adelson DW, Kruger L, Spigelman I: Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo. Brain Res 2000, 871:181-191.
  • [21]Ulrich-Lai YM, Flores CM, Harding-Rose CA, Goodis HE, Hargreaves KM: Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from rat trigeminal ganglion: evidence for intraganglionic neurotransmission. Pain 2001, 91:219-226.
  • [22]Zhang X, Chen Y, Wang C, Huang LY: Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 2007, 104:9864-9869.
  • [23]Price TJ, Flores CM: Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain 2007, 8:263-272.
  • [24]Yan J, Edelmayer RM, Wei X, De Felice M, Porreca F, Dussor G: Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache. Pain 2011, 152:106-113.
  • [25]O'Connor TP, van der Kooy D: Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J Neurosci 1986, 6:2200-2207.
  • [26]Tsai SH, Tew JM, McLean JH, Shipley MT: Cerebral arterial innervation by nerve fibers containing calcitonin gene-related peptide (CGRP): I. Distribution and origin of CGRP perivascular innervation in the rat. J Comp Neurol 1988, 271:435-444.
  • [27]Harriott AM, Gold MS: Electrophysiological properties of dural afferents in the absence and presence of inflammatory mediators. J Neurophysiol 2009, 101:3126-3134.
  • [28]Ivanusic JJ, Kwok MM, Jennings EA: Peripheral targets of 5-HT(1D) receptor immunoreactive trigeminal ganglion neurons. Headache 2011, 51:744-751.
  • [29]Strassman AM, Weissner W, Williams M, Ali S, Levy D: Axon diameters and intradural trajectories of the dural innervation in the rat. J Comp Neurol 2004, 473:364-376.
  • [30]Kosaras B, Jakubowski M, Kainz V, Burstein R: Sensory innervation of the calvarial bones of the mouse. J Comp Neurol 2009, 515:331-348.
  • [31]Messlinger K, Schuler MR, De Col R, Dux M, Neuhuber WL: Extracranial projections of meningeal afferents contribute to meningeal nociception. Soc Neurosci Annu Meet Abstr 2011, 701.06.
  • [32]Ho TW, Edvinsson L, Goadsby PJ: CGRP and its receptors provide new insights into migraine pathophysiology. Nature reviews 2010, 6:573-582.
  • [33]Recober A, Russo AF: Calcitonin gene-related peptide: an update on the biology. Curr Opin Neurol 2009, 22:241-246.
  • [34]Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R: Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab 1987, 7:720-728.
  • [35]Keller JT, Marfurt CF: Peptidergic and serotoninergic innervation of the rat dura mater. J Comp Neurol 1991, 309:515-534.
  • [36]Messlinger K, Hanesch U, Baumgartel M, Trost B, Schmidt RF: Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol 1993, 188:219-237.
  • [37]O'Connor TP, van der Kooy D: Enrichment of a vasoactive neuropeptide (calcitonin gene related peptide) in the trigeminal sensory projection to the intracranial arteries. J Neurosci 1988, 8:2468-2476.
  • [38]Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P: Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA 2006, 103:3399-3404.
  • [39]Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413:203-210.
  • [40]Snider WD, McMahon SB: Tackling pain at the source: new ideas about nociceptors. Neuron 1998, 20:629-632.
  • [41]Caterina MJ, Julius D: The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 2001, 24:487-517.
  • [42]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389:816-824.
  • [43]Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K: Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 2005, 493:596-606.
  • [44]Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP: TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 2006, 50:277-289.
  • [45]Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, et al.: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112:819-829.
  • [46]Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D: TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006, 124:1269-1282.
  • [47]Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM: Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA 2005, 102:12248-12252.
  • [48]Bessac BF, Jordt SE: Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology 2008, 23:360-370. Bethesda, Md
  • [49]Nilius B, Prenen J, Owsianik G: Irritating channels: the case of TRPA1. J Physiol 2011, 589:1543-1549.
  • [50]Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM: Roles of transient receptor potential channels in pain. Brain Res Rev 2009, 60:2-23.
  • [51]Schmidt M, Dubin AE, Petrus MJ, Earley TJ, Patapoutian A: Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 2009, 64:498-509.
  • [52]Kim YS, Son JY, Kim TH, Paik SK, Dai Y, Noguchi K, Ahn DK, Bae YC: Expression of transient receptor potential ankyrin 1 (TRPA1) in the rat trigeminal sensory afferents and spinal dorsal horn. J Comp Neurol 2010, 518:687-698.
  • [53]Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL: TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 2009, 29:4808-4819.
  • [54]Clark PJ, Evans FC: Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 1954, 35:445-453.
  • [55]Lee Y: A nearest-neighbor spatial-association measure for the analysis of firm interdependence. Environ Plann A 1979, 11:169-176.
  • [56]Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D: The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448:204-208.
  • [57]Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N: Attenuated cold sensitivity in TRPM8 null mice. Neuron 2007, 54:379-386.
  • [58]Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A: TRPM8 is required for cold sensation in mice. Neuron 2007, 54:371-378.
  • [59]McKemy DD, Neuhausser WM, Julius D: Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416:52-58.
  • [60]Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A: A TRP channel that senses cold stimuli and menthol. Cell 2002, 108:705-715.
  • [61]Dhaka A, Earley TJ, Watson J, Patapoutian A: Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 2008, 28:566-575.
  • [62]Harrington AM, Hughes PA, Martin CM, Yang J, Castro J, Isaacs NJ, Blackshaw LA, Brierley SM: A novel role for TRPM8 in visceral afferent function. Pain 2011, 152:1459-1468.
  • [63]Hayashi T, Kondo T, Ishimatsu M, Yamada S, Nakamura K, Matsuoka K, Akasu T: Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder. Neurosci Res 2009, 65:245-251.
  • [64]Abe J, Hosokawa H, Okazawa M, Kandachi M, Sawada Y, Yamanaka K, Matsumura K, Kobayashi S: TRPM8 protein localization in trigeminal ganglion and taste papillae. Brain Res Mol Brain Res 2005, 136:91-98.
  • [65]Ruan HZ, Moules E, Burnstock G: Changes in P2X3 purinoceptors in sensory ganglia of the mouse during embryonic and postnatal development. Histochem Cell Biol 2004, 122:539-551.
  • [66]Kuris A, Xu CB, Zhou MF, Tajti J, Uddman R, Edvinsson L: Enhanced expression of CGRP in rat trigeminal ganglion neurons during cell and organ culture. Brain Res 2007, 1173:6-13.
  • [67]Tajti J, Kuris A, Vecsei L, Xu CB, Edvinsson L: Organ culture of the trigeminal ganglion induces enhanced expression of calcitonin gene-related peptide via activation of extracellular signal-regulated protein kinase 1/2. Cephalalgia 2011, 31:95-105.
  • [68]Xiao Z, Tao J, Xie G, Guhl E, Huang D, Liu P, Roder JC, Cao YQ: The effects of voltage-gated calcium channel mutation on trigeminal ganglion neurons innervating the dura. Soci Neurosci Abstr 2010, 174.10.
  • [69]Mishra SK, Hoon MA: Ablation of TrpV1 neurons reveals their selective role in thermal pain sensation. Mol Cell Neurosci 2010, 43:157-163.
  • [70]Han BH, Zhou ML, Abousaleh F, Brendza RP, Dietrich HH, Koenigsknecht-Talboo J, Cirrito JR, Milner E, Holtzman DM, Zipfel GJ: Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-beta peptide, partial restoration via gamma-secretase inhibition. J Neurosci 2008, 28:13542-13550.
  文献评价指标  
  下载次数:28次 浏览次数:5次