Retrovirology | |
HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter | |
Elisa Vicenzi3  Ben Berkhout6  Alex Harwig6  Atze T. Das6  Carine Van Lint2  Marina Lusic4  Anna Kajaste-Rudnitski1  Sara Marelli5  Filippo Turrini3  | |
[1] San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy;Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), Gosselies, Belgium;Viral Pathogens and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, P2-P3 Laboratories, DIBIT, Via Olgettina n.58, Milan, 20132, Italy;Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research, Heidelberg, Germany;Viral Oncology Unit, UCL Cancer Institute, London, UK;Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands | |
关键词: Sp1-driven transcription; TRIM22; HIV-1 promoter; | |
Others : 1235118 DOI : 10.1186/s12977-015-0230-0 |
|
received in 2015-06-04, accepted in 2015-12-01, 发布年份 2015 | |
【 摘 要 】
Background
Intracellular defense proteins, also referred to as restriction factors, are capable of interfering with different steps of the viral life cycle. Among these, we have shown that Tripartite motif 22 (TRIM22) suppresses basal as well as phorbol ester-induced HIV-1 long terminal repeat (LTR)-mediated transcription, independently of its E3 ubiquitin ligase activity, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) binding to the U3 region and Tat interaction with the TAR region of the HIV-1 LTR. As basal HIV-1 transcription is driven by the transcription factor specificity protein 1 (Sp1), we have investigated whether TRIM22 could interfere with Sp1-driven transcriptional activation of the HIV-1 LTR.
Findings
293T cells, devoid of endogenous TRIM22 expression, were transfected with a TRIM22-expressing plasmid together with reporter plasmids driven by the HIV-1 LTR promoter either containing or lacking Sp1 binding sites or with reporter plasmids driven by non-viral promoter sequences either containing or lacking the three Sp1 binding sites from the HIV-1 LTR. These reporter assays showed that TRIM22 efficiently inhibited Sp1-driven transcription. Knocking down TRIM22 expression in the CD4 +SupT1 T cell line increased the replication of Sp1-dependent HIV-1 variants. TRIM22 did not interact with Sp1, but prevented binding of Sp1 to the HIV-1 promoter, as demonstrated in protein-DNA pull down and chromatin immunoprecipitation assays.
Conclusion
TRIM22 acts as a suppressor of basal HIV-1 LTR-driven transcription by preventing Sp1 binding to the HIV-1 promoter.
【 授权许可】
2015 Turrini et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20160101080431212.pdf | 1394KB | download | |
Fig.4. | 33KB | Image | download |
Fig.3. | 46KB | Image | download |
Fig.2. | 58KB | Image | download |
Fig.1. | 52KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
【 参考文献 】
- [1]Ozato K, Shin DM, Chang TH, Morse HC. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol. 2008; 8:849-860.
- [2]Turrini F, Di Pietro A, Vicenzi E. Lentiviral Effector Pathways of TRIM Proteins. DNA Cell Biol. 2014; 33:191-197.
- [3]Barr SD, Smiley JR, Bushman FD. The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog. 2008; 4:e1000007.
- [4]Kajaste-Rudnitski A, Marelli SS, Pultrone C, Pertel T, Uchil PD, Mechti N, Mothes W, Poli G, Luban J, Vicenzi E. TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-kappaB-responsive long terminal repeat elements. J Virol. 2011; 85:5183-5196.
- [5]Di Pietro A, Kajaste-Rudnitski A, Oteiza A, Nicora L, Towers GJ, Mechti N, Vicenzi E. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J Virol. 2013; 87:4523-4533.
- [6]Gao B, Duan Z, Xu W, Xiong S. Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology. 2009; 50:424-433.
- [7]Yang C, Zhao X, Sun D, Yang L, Chong C, Pan Y, Chi X, Gao Y, Wang M, Shi X et al.. Interferon alpha (IFNalpha)-induced TRIM22 interrupts HCV replication by ubiquitinating NS5A. Cell Mol Immunol. 2015.
- [8]Eldin P, Papon L, Oteiza A, Brocchi E, Lawson TG, Mechti N. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus. J Gen Virol. 2009; 90:536-545.
- [9]Jones KA, Kadonaga JT, Luciw PA, Tjian R. Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science. 1986; 232:755-759.
- [10]Das AT, Verhoef K, Berkhout B. A conditionally replicating virus as a novel approach toward an HIV vaccine. Methods Enzymol. 2004; 388:359-379.
- [11]Das AT, Harwig A, Berkhout B. The HIV-1 Tat protein has a versatile role in activating viral transcription. J Virol. 2011; 85:9506-9516.
- [12]Das AT, Harwig A, Vrolijk MM, Berkhout B. The TAR hairpin of human immunodeficiency virus type 1 can be deleted when not required for Tat-mediated activation of transcription. J Virol. 2007; 81:7742-7748.
- [13]Abdelrahim M, Safe S. Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol. 2005; 68:317-329.
- [14]Chu S. Transcriptional regulation by post-transcriptional modification–role of phosphorylation in Sp1 transcriptional activity. Gene. 2012; 508:1-8.
- [15]Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, Aunis D, Rohr O. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J. 2007; 26:412-423.
- [16]Van Lint C, Amella CA, Emiliani S, John M, Jie T, Verdin E. Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity. J Virol. 1997; 71:6113-6127.
- [17]Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S et al.. The tripartite motif family identifies cell compartments. EMBO J. 2001; 20:2140-2151.
- [18]Jiang G, Espeseth A, Hazuda DJ, Margolis DM. c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol. 2007; 81:10914-10923.
- [19]Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V, Brosch G, Wintersberger E, Seiser C. Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol. 1999; 19:5504-5511.
- [20]Kumar P, Tripathi S, Pandey KN. Histone deacetylase inhibitors modulate the transcriptional regulation of guanylyl cyclase/natriuretic peptide receptor-a gene: interactive roles of modified histones, histone acetyltransferase, p300, AND Sp1. J Biol Chem. 2014; 289:6991-7002.
- [21]Rohr O, Aunis D, Schaeffer E. COUP-TF and Sp1 interact and cooperate in the transcriptional activation of the human immunodeficiency virus type 1 long terminal repeat in human microglial cells. J Biol Chem. 1997; 272:31149-31155.
- [22]Tissot C, Mechti N. Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J Biol Chem. 1995; 270:14891-14898.
- [23]Obad S, Olofsson T, Mechti N, Gullberg U, Drott K. Regulation of the interferon-inducible p53 target gene TRIM22 (Staf50) in human T lymphocyte activation. J Interferon Cytokine Res. 2007; 27:857-864.
- [24]Perrone R, Nadai M, Frasson I, Poe JA, Butovskaya E, Smithgall TE, Palumbo M, Palu G, Richter SN. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J Med Chem. 2013; 56:6521-6530.
- [25]Hurley LH, Von Hoff DD, Siddiqui-Jain A, Yang D. Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element. Semin Oncol. 2006; 33:498-512.