Radiation Oncology | |
Treatment outcome of high-dose image-guided intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer at a single institute in Japan | |
Shogo Yamada2  Keiichi Jingu2  Yoichi Arai4  Shigeto Ishidoya4  Koichi Chida3  Haruo Matsushita2  Suguru Dobashi3  Maiko Kozumi2  Takaya Yamamoto2  Yohjiro Ishikawa2  Yuko Shirata2  Keiko Abe2  Eiji Shimizu2  Masaki Kubozono2  Toshiyuki Sugawara2  Yukio Fujita2  Noriyuki Kadoya2  Rei Umezawa2  Masatoshi Mitsuya1  Kakutaro Narazaki5  Yoshihiro Takai6  Ken Takeda3  | |
[1] Sendai Radiation Oncology and Imaging Clinic, Sendai, Japan;Department of Radiation Oncology, Tohoku University Hospital, Sendai, Japan;Department of Radiological Technology, School of Health Sciences, Faculty of medicine, Tohoku University, Sendai, Japan;Department of Urology, Tohoku University Hospital, Sendai, Japan;Department of Radiation Oncology, Sendai medical Center, Sendai, Japan;Department of Radiology and Radiation Oncology, Hirosaki University School of medicine, Hirosaki, Japan | |
关键词: Toxicity; Biochemical control; Prostate cancer; Image-guided radiotherapy; | |
Others : 1160811 DOI : 10.1186/1748-717X-7-105 |
|
received in 2012-03-31, accepted in 2012-07-02, 发布年份 2012 | |
【 摘 要 】
Background
Several studies have confirmed the advantages of delivering high doses of external beam radiotherapy to achieve optimal tumor-control outcomes in patients with localized prostate cancer. We evaluated the medium-term treatment outcome after high-dose, image-guided intensity-modulated radiotherapy (IMRT) using intra-prostate fiducial markers for clinically localized prostate cancer.
Methods
In total, 141 patients with localized prostate cancer treated with image-guided IMRT (76 Gy in 13 patients and 80 Gy in 128 patients) between 2003 and 2008 were enrolled in this study. The patients were classified according to the National Comprehensive Cancer Network-defined risk groups. Thirty-six intermediate-risk patients and 105 high-risk patients were included. Androgen-deprivation therapy was performed in 124 patients (88%) for a median of 11 months (range: 2–88 months). Prostate-specific antigen (PSA) relapse was defined according to the Phoenix-definition (i.e., an absolute nadir plus 2 ng/ml dated at the call). The 5-year actuarial PSA relapse-free survival, the 5-year distant metastasis-free survival, the 5-year cause-specific survival (CSS), the 5-year overall survival (OS) outcomes and the acute and late toxicities were analyzed. The toxicity data were scored according to the Common Terminology Criteria for Adverse Events, version 4.0. The median follow-up was 60 months.
Results
The 5-year PSA relapse-free survival rates were 100% for the intermediate-risk patients and 82.2% for the high-risk patients; the 5-year actuarial distant metastasis-free survival rates were 100% and 95% for the intermediate- and high-risk patients, respectively; the 5-year CSS rates were 100% for both patient subsets; and the 5-year OS rates were 100% and 91.7% for the intermediate- and high-risk patients, respectively. The Gleason score (<8 vs. ≥8) was significant for the 5-year PSA relapse-free survival on multivariate analysis (p = 0.044). There was no grade 3 or 4 acute toxicity. The incidence of grade 2 acute gastrointestinal (GI) and genitourinary (GU) toxicities were 1.4% and 8.5%, respectively. The 5-year actuarial likelihood of late grade 2–3 GI and GU toxicities were 6% and 6.3%, respectively. No grade 4 GI or GU late toxicity was observed.
Conclusions
These medium-term results demonstrate a good tolerance of high-dose image-guided IMRT. However, further follow-up is needed to confirm the long-term treatment outcomes.
【 授权许可】
2012 Takeda et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150411080831178.pdf | 405KB | download | |
Figure 3. | 17KB | Image | download |
Figure 2. | 16KB | Image | download |
Figure 1. | 19KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Alicikus ZA, Yamada Y, Zhang Z, Pei X, Hunt M, Kollmeier M, Cox B, Zelefsky MJ: Ten-year outcomes of high-dose, intensity-modulated radiotherapy for localized prostate cancer. Cancer 2011, 117(7):1429-1437.
- [2]Beckendorf V, Guerif S, Le Prise E, Cosset JM, Bougnoux A, Chauvet B, Salem N, Chapet O, Bourdain S, Bachaud JM, Maingon P, Hannoun-Levi JM, Malissard L, Simon JM, Pommier P, Hay M, Dubray B, Lagrange JL, Luporsi E, Bey P: 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys 2011, 80(4):1056-1063.
- [3]Lips IM, Dehnad H, van Gils CH, Kruger AEB, van der Heide UA, van Vulpen M: High-dose intensity-modulated radiotherapy for prostate cancer using daily fiducial marker-based position verification: acute and late toxicity in 331 patients. Radiat Oncol 2008, 3:15. BioMed Central Full Text
- [4]Martin JM, Bayley A, Bristow R, Chung P, Gospodarowicz M, Menard C, Milosevic M, Rosewall T, Warde PR, Catton CN: Image guided dose escalated prostate radiotherapy: still room to improve. Radiat Oncol 2009, 4:50. BioMed Central Full Text
- [5]Takeda K, Ogawa Y, Ariga H, Koto M, Sakayauchi T, Fujimoto K, Narazaki K, Mitsuya M, Takai Y, Yamada S: Clinical correlations between treatment with anticoagulants/antiaggregants and late rectal toxicity after radiotherapy for prostate cancer. Anticancer Res 2009, 29(5):1831-1834.
- [6]Britton KR, Takai Y, Mitsuya M, Nemoto K, Ogawa Y, Yamada S: Evaluation of inter- and intrafraction organ motion during intensity-modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat med 2005, 23(1):14-24.
- [7]Thames H, Kuban D, Levy L, Horwitz EM, Kupelian P, Martinez A, Michalski J, Pisansky T, Sandler H, Shipley W, Zelefsky M, Zietman A: Comparison of alternative biochemical failure definitions based on clinical outcome in 4839 prostate cancer patients treated by external beam radiotherapy between 1986 and 1995. Int J Radiat Oncol Biol Phys 2003, 57(4):929-943.
- [8]Roach M 3rd, Hanks G, Thames H, Schellhammer P, Shipley WU, Sokol GH, Sandler H: Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 2006, 65(4):965-974.
- [9]Zelefsky MJ, Leibel SA, Gaudin PB, Kutcher GJ, Fleshner NE, Venkatramen ES, Reuter VE, Fair WR, Ling CC, Fuks Z: Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Oncol Biol Phys 1998, 41(3):491-500.
- [10]Heemsbergen WD, Peeters ST, Koper PC, Hoogeman MS, Lebesque JV: Acute and late gastrointestinal toxicity after radiotherapy in prostate cancer patients: consequential late damage. Int J Radiat Oncol Biol Phys 2006, 66(1):3-10.
- [11]Pollack A, Zagars GK, Starkschall G, Antolak JA, Lee JJ, Huang E, von Eschenbach AC, Kuban DA, Rosen I: Prostate cancer radiation dose response: results of them. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002, 53(5):1097-1105.
- [12]Zelefsky MJ, Chan H, Hunt M, Yamada Y, Shippy AM, Amols H: Long-term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol 2006, 176(4 Pt 1):1415-1419.
- [13]Jacob R, Hanlon AL, Horwitz EM, Movsas B, Uzzo RG, Pollack A: The relationship of increasing radiotherapy dose to reduced distant metastases and mortality in men with prostate cancer. Cancer 2004, 100(3):538-543.
- [14]Kupelian PA, Ciezki J, Reddy CA, Klein EA, Mahadevan A: Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 2008, 71(1):16-22.
- [15]Zelefsky MJ, Yamada Y, Fuks Z, Zhang Z, Hunt M, Cahlon O, Park J, Shippy A: Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys 2008, 71(4):1028-1033.
- [16]Cahlon O, Zelefskym J, Shippy A, Chan H, Fuks Z, Yamada Y, Hunt M, Greenstein S, Amols H: Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 2008, 71(2):330-337.
- [17]Bolla M, Collette L, Blank L, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C, Mattelaer J, Lopez Torecilla J, Pfeffer JR, Lino Cutajar C, Zurlo A, Pierart M: Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 2002, 360(9327):103-106.
- [18]D'Amico AV, Chen MH, Renshaw AA, Loffredo M, Kantoff PW: Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA 2008, 299(3):289-295.
- [19]Roach M 3rd, Lu J, Pilepichm V, Asbell SO, Mohiuddin M, Terry R, Grignon D, Lawton C, Shipley W, Cox J: Predicting long-term survival, and the need for hormonal therapy: a meta-analysis of RTOG prostate cancer trials. Int J Radiat Oncol Biol Phys 2000, 47(3):617-627.
- [20]Sharma NK, Li T, Chen DY, Pollack A, Horwitz EM, Buyyounouski MK: Intensity-modulated radiotherapy reduces gastrointestinal toxicity in patients treated with androgen deprivation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2011, 80(2):437-444.
- [21]Smeenk RJ, Louwe RJ, Langen KM, Shah AP, Kupelian PA, van Lin EN, Kaanders JH: An endorectal balloon reduces intrafraction prostate motion during radiotherapy. Int J Radiat Oncol Biol Phys 2012, 83(2):661-669.
- [22]Peeters ST, Heemsbergen WD, van Putten WL, Slot A, Tabak H, Mens JW, Lebesque JV, Koper PC: Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 Gy to 78 Gy. Int J Radiat Oncol Biol Phys 2005, 61(4):1019-1034.
- [23]Bria E, Cuppone F, Giannarelli D, Milella M, Ruggeri EM, Sperduti I, Pinnaro P, Terzoli E, Cognetti F, Carlini P: Does hormone treatment added to radiotherapy improve outcome in locally advanced prostate cancer?:meta-analysis of randomized trials. Cancer 2009, 115(15):3446-3456.
- [24]Jani AB, Gratzle J: Late radiotherapy toxicity after prostate cancer treatment: influence of hormonal therapy. Urology 2005, 66(3):566-570.
- [25]Zelefsky ML, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, Amols H, Venkatraman ES, Leibel SA: High-dose intensity modulated radiation therapy for prostatic cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 2002, 53(5):1111-1116.
- [26]van der Wielen GJ, van Putten WL, Incrocci L: Sexual function after three-dimensional conformal radiotherapy for prostate cancer: results from a dose-escalation trial. Int J Radiat Oncol Biol Phys 2007, 68(2):479-484.
- [27]Chen CT, Valicenti RK, Lu J, Derose T, Dicker AP, Strup SE, Mulholland SG, Hirsch IH, McGinnis DE, Gomella LG: Does hormonal therapy influence sexual function in men receiving 3D conformal radiation therapy for prostate cancer? Int J Radiat Oncol Biol Phys 2001, 50(3):591-595.
- [28]Namiki S, Ishidoya S, Ito A, Tochigi T, Numata I, Narazaki K, Yamada S, Takai Y, Arai Y: Five-year follow-up of health-related quality of life after intensity-modulated radiation therapy for prostate cancer. Jpn J Clin Oncol 2009, 39(11):732-738.