| Respiratory Research | |
| Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency | |
| Dawn L DeMeo1,12  Robert A Stockley6  Edwin K Silverman1,12  Gerard Turino1  Charlie Strange9  James K Stoller7  James M Stocks1,13  Robert A Sandhaus3  Stephen I Rennard1,11  Gerard McElvaney8  Edward Eden1  Edward J Campbell1,14  Mark L Brantly2  Alan F Barker4  Alice M Wood5  Woo Jin Kim1,10  | |
| [1] St. Luke's/Roosevelt Hospital, New York, NY, USA;University of Florida, Gainesville, FL, USA;National Jewish Health, Denver, CO, USA;Oregon Health and Science University, Portland, OR, USA;School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK;Lung Investigation Unit, University Hospitals Birmingham, Birmingham, UK;Cleveland Clinic, Cleveland, OH, USA;Beaumont Hospital, Dublin, Ireland;Medical University of South Carolina, Charleston, SC, USA;Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea;University of Nebraska, Omaha, NE, USA;Channing Laboratory and the Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA;University of Texas at Tyler, Tyler, TX, USA;Intermountain Health Care, Provo, and Heredilab, Inc, Salt Lake City, UT, USA | |
| 关键词: IREB2; Genetic modifiers; Genetic association analysis; Chronic obstructive pulmonary disease; CHRNA3; | |
| Others : 796746 DOI : 10.1186/1465-9921-13-16 |
|
| received in 2011-12-11, accepted in 2012-02-22, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
The development of COPD in subjects with alpha-1 antitrypsin (AAT) deficiency is likely to be influenced by modifier genes. Genome-wide association studies and integrative genomics approaches in COPD have demonstrated significant associations with SNPs in the chromosome 15q region that includes CHRNA3 (cholinergic nicotine receptor alpha3) and IREB2 (iron regulatory binding protein 2).
We investigated whether SNPs in the chromosome 15q region would be modifiers for lung function and COPD in AAT deficiency.
Methods
The current analysis included 378 PIZZ subjects in the AAT Genetic Modifiers Study and a replication cohort of 458 subjects from the UK AAT Deficiency National Registry. Nine SNPs in LOC123688, CHRNA3 and IREB2 were selected for genotyping. FEV1 percent of predicted and FEV1/FVC ratio were analyzed as quantitative phenotypes. Family-based association analysis was performed in the AAT Genetic Modifiers Study. In the replication set, general linear models were used for quantitative phenotypes and logistic regression models were used for the presence/absence of emphysema or COPD.
Results
Three SNPs (rs2568494 in IREB2, rs8034191 in LOC123688, and rs1051730 in CHRNA3) were associated with pre-bronchodilator FEV1 percent of predicted in the AAT Genetic Modifiers Study. Two SNPs (rs2568494 and rs1051730) were associated with the post-bronchodilator FEV1 percent of predicted and pre-bronchodilator FEV1/FVC ratio; SNP-by-gender interactions were observed. In the UK National Registry dataset, rs2568494 was significantly associated with emphysema in the male subgroup; significant SNP-by-smoking interactions were observed.
Conclusions
IREB2 and CHRNA3 are potential genetic modifiers of COPD phenotypes in individuals with severe AAT deficiency and may be sex-specific in their impact.
【 授权许可】
2012 Kim et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140706003806967.pdf | 310KB | ||
| Figure 2. | 52KB | Image | |
| Figure 1. | 17KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J: Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: Gold executive summary. Am J Respir Crit Care Med 2007, 176:532-555.
- [2]DeMeo DL, Silverman EK: Alpha1-antitrypsin deficiency. 2: Genetic aspects of alpha-1-antitrypsin deficiency: Phenotypes and genetic modifiers of emphysema risk. Thorax 2004, 59:259-264.
- [3]Wood AM, Needham M, Simmonds MJ, Newby PR, Gough SC, Stockley RA: Phenotype differences in alpha-1-deficient sibling pairs may relate to genetic variation. COPD 2008, 5:353-359.
- [4]Wood AM, Harrison RM, Semple S, Ayres JG, Stockley RA: Outdoor air pollution is associated with rapid decline of lung function in alpha-1-antitrypsin deficiency. Occup Environ Med 2010, 67:556-561.
- [5]American Thoracic Society/European Respiratory Society statement: Standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med 2003, 168:818-900.
- [6]Silverman EK, Province MA, Rao DC, Pierce JA, Campbell EJ: A family study of the variability of pulmonary function in alpha 1-antitrypsin deficiency. Quantitative phenotypes. Am Rev Respir Dis 1990, 142:1015-1021.
- [7]DeMeo DL, Campbell EJ, Brantly ML, Barker AF, Eden E, McElvaney NG, Rennard SI, Stocks JM, Stoller JK, Strange C, Turino G, Sandhaus RA, Silverman EK: Heritability of lung function in severe alpha-1 antitrypsin deficiency. Hum Hered 2009, 67:38-45.
- [8]Novoradovsky A, Brantly ML, Waclawiw MA, Chaudhary PP, Ihara H, Qi L, Eissa NT, Barnes PM, Gabriele KM, Ehrmantraut ME, Rogliani P, Moss J: Endothelial nitric oxide synthase as a potential susceptibility gene in the pathogenesis of emphysema in alpha 1-antitrypsin deficiency. Am J Respir Cell Mol Biol 1999, 20:441-447.
- [9]Rodriguez F, de la Roza C, Jardi R, Schaper M, Vidal R, Miravitlles M: Glutathione s-transferase p1 and lung function in patients with alpha1-antitrypsin deficiency and COPD. Chest 2005, 127:1537-1543.
- [10]Wood AM, Simmonds MJ, Bayley DL, Newby PR, Gough SC, Stockley RA: The TNFalpha gene relates to clinical phenotype in alpha-1-antitrypsin deficiency. Respir Res 2008, 9:52.
- [11]DeMeo DL, Campbell EJ, Barker AF, Brantly ML, Eden E, McElvaney NG, Rennard SI, Sandhaus RA, Stocks JM, Stoller JK, Strange C, Turino G, Silverman EK: IL-10 polymorphisms are associated with airflow obstruction in severe alpha1-antitrypsin deficiency. Am J Respir Cell Mol Biol 2008, 38:114-120.
- [12]Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifaaon G, Stefansson H, Ingason A, Stacey SN, Bergthorsson JT, Thorlacius S, Gudmundsson J, Jonsson T, Jakobsdottir M, Saemundsdottir J, Olafsdottir O, Gudmendsson LJ, Bjornsdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsater A, Flex A, Aben KK, de Vegt F, et al.: A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008, 452:638-642.
- [13]Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Chen C, Goodman G, Field JK, Lilglou T, Xinarianos G, Cassidy A, McLaughlin J, Liu G, Narod S, Krokan HE, Skorpen F, Elvestad MB, Hveem K, Vatten L, Linseisen J: A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008, 452:633-637.
- [14]Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS: Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008, 40:616-622.
- [15]Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, Feng S, Hersh CP, Bakke P, Gulsvik A, Ruppert A, Lodrup Carlsen KC, Roses A, Anderson W, Rennard SI, Lomas DA, Silverman EK, Goldstein DB: ICGN Investigators. A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genet 2009, 5:1000421.
- [16]Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, Lomas DA, Silverman EK: ECLIPSE and ICGN Investigators. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010, 182:1498-1505.
- [17]Lambrechts D, Buysschaert I, Zanen P, Coolen J, Lays N, Cuppens H, Groen HJ, Dewever W, van Klaveren RJ, Verschakelen J, Wijmenga C, Postma DS, Decramer M, Janssens W: The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am J Respir Crit Care Med 2010, 181:486-493.
- [18]DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, Lange C, Litonjua A, Bueno R, Pillai SG, Lomas DA, Sparrow D, Shapiro SD, Criner GJ, Kim HP, Chen Z, Choi AM, Reilly J, Silverman EK: Integration of genomic and genetic approached implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet 2009, 85:493-502.
- [19]DeMeo DL, Sandhaus RA, Barker AF, Brantly ML, Eden E, McElvaney NG, Rennard S, Burchard E, Stocks JM, Stoller JK, Strange C, Turino GM, Campbell EJ, Silverman EK: Determinants of airflow obstruction in severe alpha-1-antitrypsin deficiency. Thorax 2007, 62:806-813.
- [20]Crapo RO MA, Gardener RM: Reference spirometric values using techniques and equipment that meet ats recommendations. Am Rev Respir Di 1982, 123:659-664.
- [21]Definition and classification of chronic bronchitis for clinical and epidemiological purposes Lancet 1965, 285:775-779.
- [22]Dowson LJ, Guest PJ, Hill SL, Holder RL, Stockley RA: High-resolution computed tomography scanning in alpha1-antitrypsin deficiency: Relationship to lung function and health status. Eur Respir J 2001, 17:1097-1104.
- [23]Soejima K, Yamaguchi K, Kohda E, Takeshita K, Ito Y, Mastubara H, Oguma T, Inoue T, Okubo Y, Amakawa K, Tateno H, Shiomi T: Longitudinal follow-up study of smoking-induced lung density changes by high-resolution computed tomography. Am J Respir Crit Care Med 2000, 161:1264-1273.
- [24]de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D: Efficiency and power in genetic association studies. Nat Genet 2005, 37:1217-1223.
- [25]O'Connell JR, Weeks DE: Pedcheck: A program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998, 63:259-266.
- [26]Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM: PBAT: tools for family-based association studies. Am J Hum Genet 2004, 74:367-369.
- [27]Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ: Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 2007, 16:36-49.
- [28]Arredondo J, Chernyavsky AI, Marubio LM, Beaudet AL, Jolkovsky DL, Pinkerton KE, Grando SA: Receptor-mediated tobacco toxicity: Regulation of gene expression through alpha3beta2 nicotinic receptor in oral epithelial cells. Am J Pathol 2005, 166:597-613.
- [29]West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA: Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 2003, 111:81-90.
- [30]Pantopoulos K: Iron metabolism and the ire/irp regulatory system: An update. Ann NY Acad Sci 2004, 1012:1-13.
- [31]LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R, Grinberg A, Love P, Tresser N, Rouault TA: Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 2001, 27:209-214.
- [32]Chappell SL, Daly L, Lotya J, Alsaegh A, Guetta-Baranes T, Roca J, Rabinovich R, Morgan K, Millar AB, Donnelly SC, Keatings V, MacNee W, Stolk J, Hiemstra PS, Miniati M, Monti S, O'Connor CM, Kalsheker N: The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study. BMC Med Genet 2011, 12:24.
- [33]Piitulainen E, Tornling G, Eriksson S: Effect of age and occupational exposure to airway irritants on lung function in non-smoking individuals with alpha 1-antitrypsin deficiency (PiZZ). Thorax 1997, 52:244-248.
PDF