期刊论文详细信息
Orphanet Journal of Rare Diseases
Stüve-Wiedemann syndrome: LIFR and associated cytokines in clinical course and etiology
Julia Thom Oxford1  Ken Tawara1  Cheryl L Jorcyk1  Dawn Mikelonis1 
[1] Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise ID 83725, USA
关键词: LIFR;    LIF;    Leukemia inhibitory factor receptor;    Stüve-Wiedemann syndrome;   
Others  :  863236
DOI  :  10.1186/1750-1172-9-34
 received in 2013-11-23, accepted in 2014-03-06,  发布年份 2014
PDF
【 摘 要 】

Stüve-Wiedemann syndrome (STWS; OMIM #610559) is a rare bent-bone dysplasia that includes radiologic bone anomalies, respiratory distress, feeding difficulties, and hyperthermic episodes. STWS usually results in infant mortality, yet some STWS patients survive into and, in some cases, beyond adolescence. STWS is caused by a mutation in the leukemia inhibitory factor receptor (LIFR) gene, which is inherited in an autosomally recessive pattern. Most LIFR mutations resulting in STWS are null mutations which cause instability of the mRNA and prevent the formation of LIFR, impairing the signaling pathway. LIFR signaling usually follows the JAK/STAT3 pathway, and is initiated by several interleukin-6-type cytokines. STWS is managed on a symptomatic basis since there is no treatment currently available.

【 授权许可】

   
2014 Mikelonis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725031852402.pdf 964KB PDF download
133KB Image download
45KB Image download
106KB Image download
【 图 表 】

【 参考文献 】
  • [1]Stuve A, Wiedemann HR: Congenital bowing of the long bones in two sisters. Lancet 1971, 2:495.
  • [2]Wiedemann H, Stueve A: Stüve‒Wiedemann syndrome: update and historical footnote. Am J Med Genet 1996, 63:12-16.
  • [3]Rocco MD, Stella G: Long‒term survival in Stuve‒Wiedemann syndrome: a neuro‒myo‒skeletal disorder with manifestations of dysautonomia. Am J Med Genet 2003, 118A:362-368.
  • [4]Pizones J, Sponseller PD, Izquirdo E, Sanz E, Sanchez-Martinez F, Alvarez P, Zuniga L: Delayed tetraplegia after thoracolumnbar scoliosis surgery in Stuve-Wiedemann syndrome. Spine Deform 2013, 1:72-78.
  • [5]Chen E, Cotter P: Characterization of a long‒term survivor with Stüve‒Wiedemann syndrome and mosaicism of a supernumerary marker chromosome. Am J Med Genet 2001, 101:240-245.
  • [6]Superti‒Furga A, Tenconi R: Schwartz‒Jampel syndrome type 2 and Stüve‒Wiedemann syndrome: a case for “Lumping”. Am J Med Genet 1998, 78:150-154.
  • [7]Dagoneau N, Scheffer D, Huber C, Al-Gazali LI, Di Rocco M, Godard A, Martinovic J, Raas-Rothschild A, Sigaudy S, Unger S, Nicole S, Fontaine B, Taupin J-L, Moreau J-F, Superti-Furga A, Le Merrer M, Bonaventure J, Munnich A, Legeai-Mallet L, Cormier-Daire V: Null Leukemia Inhibitory Factor Receptor (LIFR) Mutations in Stüve-Wiedemann/Schwartz-Jampel Type 2 Syndrome. Am J Hum Genet 2004, 74:298-305.
  • [8]Dagoneau N, Bellais S, Blanchet P: Mutations in Cytokine Receptor-Like Factor 1 (CRLF1) Account for Both Crisponi and Cold-Induced Sweating Syndromes. Am J Hum Genet 2007, 80:966-970.
  • [9]Crisponi L, Crisponi G, Meloni A: Crisponi Syndrome Is Caused by Mutations in the CRLF1 Gene and Is Allelic to Cold-Induced Sweating Syndrome Type 1. Am J Hum Genet 2007, 80:971-981.
  • [10]Rigante D: Are there febrile diseases with a risk of sudden death in children? Arch Dis Child 2012, 97:180.
  • [11]Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A: Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 2011, 155A:943-968.
  • [12]Al-Gazali LI, Ravenscroft A, Feng A, Shubbar A, Al-Saggaf A, Haas D: Stüve-Wiedemann syndrome in children surviving infancy: clinical and radiological features. Clin Dysmorphol 2003, 12:1-8.
  • [13]Jung C, Dagoneau N, Baujat G, Merrer M, David A, Rocco M, Hamel B, Megarbane A, Superti-Furga A, Unger S, Munnich A, Cormier-Daire V: Stuve-Wiedemann syndrome: long-term follow-up and genetic heterogeneity. Clin Genet 2010, 77:266-272.
  • [14]Al-Gazali L, Ali BR: Mutations of a country: a mutation review of single gene disorders in the United Arab Emirates (UAE). Hum Mutat 2010, 31:505-520.
  • [15]Koul R, Al-Kindy A, Mani R, Sankhla D, Al-Futaisi A: One in three: congenital bent bone disease and intermittent hyperthermia in three siblings with stuve-wiedemann syndrome. Sultan Qaboos Univ Med J 2013, 13:301-305.
  • [16]Cormier-Daire V, Munnich A, Lyonnet S, Rustin P, Delezoide AL, Maroteaux P, Le Merrer M: Presentation of six cases of Stüve-Wiedemann syndrome. Pediatr Radiol 1998, 28:776-780.
  • [17]Bonthuis D, Morava E: Stuve Wiedemann syndrome and related syndromes: case report and possible anesthetic complications. Paediatr Anesth 2009, 19:212-217.
  • [18]Corona-Rivera JR, Cormier-Daire V, Dagoneau N, Coello-Ramírez P, López-Marure E, Romo-Huerta CO, Silva-Baez H, Aguirre-Salas LM, Estrada-Solorio MI: Abnormal oral-pharyngeal swallowing as cause of morbidity and early death in Stüve-Wiedemann syndrome. Eur J Med Genet 2009, 52:242-246.
  • [19]Kaissi A, Rumpler M, Csepan R, Grill F, Klaushofer K: Congenital contractures and distinctive phenotypic features consistent with Stuve-Wiedmann syndrome in a male infant. Cases J 2008, 1:121. BioMed Central Full Text
  • [20]Begam M a, Alsafi W, Bekdache GN, Chedid F, Al-Gazali L, Mirghani HM: Stuve-Wiedemann syndrome: a skeletal dysplasia characterized by bowed long bones. Ultrasound Obstet Gynecol 2011, 38:553-558.
  • [21]Ware CB, Horowitz MC, Renshaw BR, Hunt JS, Liggitt D, Koblar SA, Gliniak BC, McKenna HJ, Papayannopoulou T, Thoma B: Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 1995, 121:1283-1299.
  • [22]Tomida M, Gotoh O: Structure of the gene encoding the human differentiation-stimulating factor/leukemia inhibitory factor receptor. J Biochem 1996, 120:201-205.
  • [23]Gearing DP, Thut CJ, VandeBos T, Gimpel SD, Delaney PB, King J, Price V, Cosman D, Beckmann MP: Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J 1991, 10:2839-2848.
  • [24]Sato S, Omori Y, Katoh K, Kondo M, Kanagawa M, Miyata K, Funabiki K, Koyasu T, Kajimura N, Miyoshi T, Sawai H, Kobayashi K, Tani A, Toda T, Usukura J, Tano Y, Fujikado T, Furukawa T: Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci 2008, 11:923-931.
  • [25]Kluger G, Koehler U, Neuhann TM, Pieper T, Staudt M, von Stülpnagel C: Generalized epilepsy in two patients with 5p duplication. Neuropediatrics 2013, 44:225-229.
  • [26]Cihil KM, Ellinger P, Fellows A, Stolz DB, Madden DR, Swiatecka-Urban A: Disabled-2 protein facilitates assembly polypeptide-2-independent recruitment of cystic fibrosis transmembrane conductance regulator to endocytic vesicles in polarized human airway epithelial cells. J Biol Chem 2012, 287:15087-15099.
  • [27]Kim J-D, Kang H, Larrivée B, Lee MY, Mettlen M, Schmid SL, Roman BL, Qyang Y, Eichmann A, Jin S-W: Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. Dev Cell 2012, 23:441-448.
  • [28]Huang C-H, Cheng J-C, Chen J-C, Tseng C-P: Evaluation of the role of Disabled-2 in nerve growth factor-mediated neurite outgrowth and cellular signalling. Cell Signal 2007, 19:1339-1347.
  • [29]Andrades JA, Nimni ME, Becerra J, Eisenstein R, Davis M, Sorgente N: Complement proteins are present in developing endochondral bone and may mediate cartilage cell death and vascularization. Exp Cell Res 1996, 227:208-213.
  • [30]Wimmers K, Khoa DVA, Schütze S, Murani E, Ponsuksili S: The three-way relationship of polymorphisms of porcine genes encoding terminal complement components, their differential expression, and health-related phenotypes. BMC Proc 2011, 5 Suppl 4:S19.
  • [31]Liu WT, Vanguri P, Shin ML: Studies on demyelination in vitro: the requirement of membrane attack components of the complement system. J Immunol 1983, 131:778-782.
  • [32]Kim HS, Kim DK, Kim AR, Mun SH, Lee SK, Kim JH, Kim YM, Choi WS: Fyn positively regulates the activation of DAP12 and FcRγ-mediated costimulatory signals by RANKL during osteoclastogenesis. Cell Signal 2012, 24:1306-1314.
  • [33]Kim AN, Jeon W-K, Lim K-H, Lee H-Y, Kim WJ, Kim B-C: Fyn mediates transforming growth factor-beta1-induced down-regulation of E-cadherin in human A549 lung cancer cells. Biochem Biophys Res Commun 2011, 407:181-184.
  • [34]Nevsímalová S, Prazák J, Herzog P, Seemanová E: Duffy locus linkage and HLA antigens in hereditary motor-sensory neuropathy. Schweiz Arch Neurol Psychiatr 1991, 142:19-29.
  • [35]Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A: Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood 2003, 102:3154-3162.
  • [36]Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang J-G, Nicola NA, Gillespie MT, Martin TJ, Sims NA: Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 2010, 120:582-592.
  • [37]Chen D, Chu C-Y, Chen C-Y, Yang H-C, Chiang Y-Y, Lin T-Y, Chiang I-P, Chuang D-Y, Yu C-C, Chow K-C: Expression of short-form oncostatin M receptor as a decoy receptor in lung adenocarcinomas. J Pathol 2008, 215:290-299.
  • [38]Morikawa Y: Oncostatin M in the development of the nervous system. Anat Sci Int 2005, 80:53-59.
  • [39]Komori T, Tanaka M, Senba E, Miyajima A, Morikawa Y: Lack of oncostatin M receptor β leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype. J Biol Chem 2013, 288:21861-21875.
  • [40]Gough NM, Gearing DP, King JA, Willson TA, Hilton DJ, Nicola NA, Metcalf D: Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor. Proc Natl Acad Sci U S A 1988, 85:2623-2627.
  • [41]Malik N, Kallestad JC, Gunderson NL, Austin SD, Neubauer MG, Ochs V, Marquardt H, Zarling JM, Shoyab M, Wei CM: Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M. Mol Cell Biol 1989, 9:2847-2853.
  • [42]Pennica D, Swanson TA, Shaw KJ, Kuang WJ, Gray CL, Beatty BG, Wood WI: Human cardiotrophin-1: protein and gene structure, biological and binding activities, and chromosomal localization. Cytokine 1996, 8:183-189.
  • [43]Stöckli KA, Lottspeich F, Sendtner M, Masiakowski P, Carroll P, Götz R, Lindholm D, Thoenen H: Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 1989, 342:920-923.
  • [44]Liu J, Modrell B, Aruffo A, Scharnowske S, Shoyab M: Interactions between oncostatin M and the IL-6 signal transducer, gp130. Cytokine 1994, 6:272-278.
  • [45]Gearing DP, Bruce AG: Oncostatin M binds the high-affinity leukemia inhibitory factor receptor. New Biol 1992, 4:61-65.
  • [46]Gearing DP, Comeau MR, Friend DJ, Gimpel SD, Thut CJ, McGourty J, Brasher KK, King JA, Gillis S, Mosley B: The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 1992, 255:1434-1437.
  • [47]Mosley B, De Imus C, Friend D, Boiani N, Thoma B, Park LS, Cosman D: Dual oncostatin M (OSM) receptors. Cloning and characterization of an alternative signaling subunit conferring OSM-specific receptor activation. J Biol Chem 1996, 271:32635-32643.
  • [48]Wollert KC, Taga T, Saito M, Narazaki M, Kishimoto T, Glembotski CC, Vernallis AB, Heath JK, Pennica D, Wood WI, Chien KR: Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 1996, 271:9535-9545.
  • [49]Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003, 374:1-20.
  • [50]Port MD, Laszlo GS, Nathanson NM: Transregulation of leukemia inhibitory [corrected] factor receptor expression and function by growth factors in neuroblastoma cells. J Neurochem 2008, 106:1941-1951.
  • [51]Elson GC, Lelièvre E, Guillet C, Chevalier S, Plun-Favreau H, Froger J, Suard I, de Coignac AB, Delneste Y, Bonnefoy JY, Gauchat JF, Gascan H: CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat Neurosci 2000, 3:867-872.
  • [52]Stahl N, Yancopoulos GD: The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. J Neurobiol 1994, 25:1454-1466.
  • [53]Giese B, Roderburg C, Sommerauer M, Wortmann SB, Metz S, Heinrich PC, Müller-Newen G: Dimerization of the cytokine receptors gp130 and LIFR analysed in single cells. J Cell Sci 2005, 118:5129-5140.
  • [54]Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi-Takihara K, Kishimoto T: Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation 1996, 94:2626-2632.
  • [55]Bellais S, Goff C, Dagoneau N, Munnich A, Cormier-Daire V: In vitro readthrough of termination codons by gentamycin in the Stüve-Wiedemann Syndrome. Eur J Hum Genet 2010, 18:130-132.
  • [56]Sriram K, Benkovic SA, Hebert MA, Miller DB, O’Callaghan JP: Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration: key signaling pathway for ast. J Biol Chem 2004, 279:19936-19947.
  • [57]Sekimoto T, Imamoto N, Nakajima K, Hirano T, Yoneda Y: Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J 1997, 16:7067-7077.
  • [58]Sims NA, Jenkins BJ, Quinn JMW, Nakamura A, Glatt M, Gillespie MT, Ernst M, Martin TJ: Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest 2004, 113:379-389.
  • [59]Schiemann WP, Bartoe JL, Nathanson NM: Box 3-independent signaling mechanisms are involved in leukemia inhibitory factor receptor alpha- and gp130-mediated stimulation of mitogen-activated protein kinase. Evidence for participation of multiple signaling pathways which converge at Ras. J Biol Chem 1997, 272:16631-16636.
  • [60]Zhang JG, Zhang Y, Owczarek CM, Ward LD, Moritz RL, Simpson RJ, Yasukawa K, Nicola NA: Identification and characterization of two distinct truncated forms of gp130 and a soluble form of leukemia inhibitory factor receptor alpha-chain in normal human urine and plasma. J Biol Chem 1998, 273:10798-10805.
  • [61]Blanchard F, Duplomb L, Wang Y, Robledo O, Kinzie E, Pitard V, Godard A, Jacques Y, Baumann H: Stimulation of leukemia inhibitory factor receptor degradation by extracellular signal-regulated kinase. J Biol Chem 2000, 275:28793-28801.
  • [62]Blanchard F, Wang Y, Kinzie E, Duplomb L, Godard A, Baumann H: Oncostatin M regulates the synthesis and turnover of gp130, leukemia inhibitory factor receptor alpha, and oncostatin M receptor beta by distinct mechanisms. J Biol Chem 2001, 276:47038-47045.
  • [63]White UA, Stephens JM: Neuropoietin activates STAT3 independent of LIFR activation in adipocytes. Biochem Biophys Res Commun 2010, 395:48-50.
  • [64]Lindhard A, Bentin-Ley U, Ravn V, Islin H, Hviid T, Rex S, Bangsbøll S, Sørensen S: Biochemical evaluation of endometrial function at the time of implantation. Fertil Steril 2002, 78:221-233.
  • [65]Allan EH, Hilton DJ, Brown MA, Evely RS, Yumita S, Metcalf D, Gough NM, Ng KW, Nicola NA, Martin TJ: Osteoblasts display receptors for and responses to leukemia-inhibitory factor. J Cell Physiol 1990, 145:110-119.
  • [66]Jay PR, Centrella M, Lorenzo J, Bruce AG, Horowitz MC: Oncostatin-M: a new bone active cytokine that activates osteoblasts and inhibits bone resorption. Endocrinology 1996, 137:1151-1158.
  • [67]Gough NM, Williams RL: The pleiotropic actions of leukemia inhibitory factor. Cancer Cells 1989, 1:77-80.
  • [68]Bozec A, Bakiri L, Hoebertz A, Eferl R, Schilling AF, Komnenovic V, Scheuch H, Priemel M, Stewart CL, Amling M, Wagner EF: Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia. Nature 2008, 454:221-225.
  • [69]Bugga L, Gadient RA, Kwan K, Stewart CL, Patterson PH: Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. J Neurobiol 1998, 36:509-524.
  • [70]Li M, Sendtner M, Smith A: Essential function of LIF receptor in motor neurons. Nature 1995, 378:724-727.
  • [71]Palmqvist P, Persson E, Conaway HH, Lerner UH: IL-6, Leukemia Inhibitory Factor, and Onccostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-kB Ligand, Osteoprotegerin, and Receptor Activator of NF-kB in Mouse Calvariae. J Immunol 2002, 169:3353-3362.
  • [72]Ruan M, Pederson L, Bradley EW, Bamberger A-M, Oursler MJ: Transforming growth factor-{beta} coordinately induces suppressor of cytokine signaling 3 and leukemia inhibitory factor to suppress osteoclast apoptosis. Endocrinology 2010, 151:1713-1722.
  • [73]Malaval L, Aubin JE: Biphasic effects of leukemia inhibitory factor on osteoblastic differentiation. J Cell Biochem Suppl 2001, Suppl 36:63-70.
  • [74]Walker EC, McGregor NE, Poulton IJ, Pompolo S, Allan EH, Quinn JMW, Gillespie MT, Martin TJ, Sims NA: Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res 2008, 23:2025-2032.
  • [75]Richards CD, Langdon C, Deschamps P, Pennica D, Shaughnessy SG: Stimulation of osteoclast differentiation in vitro by mouse oncostatin M, leukaemia inhibitory factor, cardiotrophin-1 and interleukin 6: synergy with dexamethasone. Cytokine 2000, 12:613-621.
  • [76]Majumder A, Banerjee S, Harrill JA, Machacek DW, Mohamad O, Bacanamwo M, Mundy WR, Wei L, Dhara SK, Stice SL: Neurotrophic effects of leukemia inhibitory factor on neural cells derived from human embryonic stem cells. Stem Cells 2012, 30:2387-2399.
  • [77]Gardiner J, Barton D, Vanslambrouck JM, Braet F, Hall D, Marc J, Overall R: Defects in tongue papillae and taste sensation indicate a problem with neurotrophic support in various neurological diseases. Neuroscientist 2008, 14:240-250.
  • [78]Nawa H, Nakanishi S, Patterson PH: Recombinant cholinergic differentiation factor (leukemia inhibitory factor) regulates sympathetic neuron phenotype by alterations in the size and amounts of neuropeptide mRNAs. J Neurochem 1991, 56:2147-2150.
  • [79]Kanazawa H, Ieda M, Kimura K, Arai T, Kawaguchi-Manabe H, Matsuhashi T, Endo J, Sano M, Kawakami T, Kimura T, Monkawa T, Hayashi M, Iwanami A, Okano H, Okada Y, Ishibashi-Ueda H, Ogawa S, Fukuda K: Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest 2010, 120:408-421.
  • [80]Pennica D, King KL, Shaw KJ, Luis E, Rullamas J, Luoh SM, Darbonne WC, Knutzon DS, Yen R, Chien KR: Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 1995, 92:1142-1146.
  • [81]Turnley AM, Bartlett PF: Cytokines that signal through the leukemia inhibitory factor receptor-beta complex in the nervous system. J Neurochem 2000, 74:889-899.
  • [82]Knight DA, D’Aprile AC, Spalding LJ, Goldie RG, Thompson PJ: Leukaemia inhibitory factor (LIF) upregulates excitatory non-adrenergic non-cholinergic and maintains cholinergic neural function in tracheal explants. Br J Pharmacol 2000, 130:975-979.
  • [83]Spangenburg EE, Booth FW: Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol 2002, 283:C204-C211.
  • [84]Megeney LA, Perry RL, LeCouter JE, Rudnicki MA: bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Dev Genet 1996, 19:139-145.
  • [85]Jo C, Kim H, Jo I, Choi I, Jung S-C, Kim J, Kim SS, Jo SA: Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim Biophys Acta 2005, 1743:187-197.
  • [86]Hunt LC, Tudor EM, White JD: Leukemia inhibitory factor-dependent increase in myoblast cell number is associated with phosphotidylinositol 3-kinase-mediated inhibition of apoptosis and not mitosis. Exp Cell Res 2010, 316:1002-1009.
  • [87]Rose TM, Bruce AG: Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6. Proc Natl Acad Sci U S A 1991, 88:8641-8645.
  • [88]Rose TM, Lagrou MJ, Fransson I, Werelius B, Delattre O, Thomas G, Jong PJ, Todaro GJ, Dumanski JP: The genes for oncostatin M (OSM) and leukemia inhibitory factor (LIF) are tightly linked on human chromosome 22. Genomics 1993, 17:136-140.
  • [89]Sims NA, Walsh NC: GP130 cytokines and bone remodelling in health and disease. BMB Rep 2010, 43:513-523.
  • [90]Bolin C, Tawara K, Sutherland C, Redshaw J, Aranda P, Moselhy J, Anderson R, Jorcyk CL: Oncostatin m promotes mammary tumor metastasis to bone and osteolytic bone degradation. Genes Cancer 2012, 3:117-130.
  • [91]Brounais B, Chipoy C, Mori K, Charrier C, Battaglia S, Pilet P, Richards CD, Heymann D, Rédini F, Blanchard F: Oncostatin M induces bone loss and sensitizes rat osteosarcoma to the antitumor effect of Midostaurin in vivo. Clin Cancer Res 2008, 14:5400-5409.
  • [92]Martinou JC, Martinou I, Kato AC: Cholinergic differentiation factor (CDF/LIF) promotes survival of isolated rat embryonic motoneurons in vitro. Neuron 1992, 8:737-744.
  • [93]Oberle S, Schober A, Meyer V, Holtmann B, Henderson C, Sendtner M, Unsicker K: Loss of leukemia inhibitory factor receptor beta or cardiotrophin-1 causes similar deficits in preganglionic sympathetic neurons and adrenal medulla. J Neurosci 2006, 26:1823-1832.
  • [94]Gritman K, Winkle DM, Lorentz CU, Pennica D, Habecker BA: The lack of cardiotrophin-1 alters expression of interleukin-6 and leukemia inhibitory factor mRNA but does not impair cardiac injury response. Cytokine 2006, 36:9-16.
  • [95]Pennica D, Arce V, Swanson TA, Vejsada R, Pollock RA, Armanini M, Dudley K, Phillips HS, Rosenthal A, Kato AC, Henderson CE: Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 1996, 17:63-74.
  • [96]Zhou D, Zheng X, Wang L, Stelmack G, Halayko AJ, Dorscheid D, Bai TR: Expression and effects of cardiotrophin-1 (CT-1) in human airway smooth muscle cells. Br J Pharmacol 2003, 140:1237-1244.
  • [97]Zheng X, Zhou D, Seow CY, Bai TR: Cardiotrophin-1 alters airway smooth muscle structure and mechanical properties in airway explants. Am J Physiol Lung Cell Mol Physiol 2004, 287:L1165-L1171.
  • [98]Barbin G, Manthorpe M, Varon S: Purification of the chick eye ciliary neuronotrophic factor. J Neurochem 1984, 43:1468-1478.
  • [99]Akawi NA, Ali BR, Al-Gazali L: Stüve-Wiedemann syndrome and related bent bone dysplasias. Clin Genet 2012, 82:12-21.
  • [100]McGregor NE, Poulton IJ, Walker EC, Pompolo S, Quinn JMW, Martin TJ, Sims NA: Ciliary neurotrophic factor inhibits bone formation and plays a sex-specific role in bone growth and remodeling. Calcif Tissue Int 2010, 86:261-270.
  • [101]Grimaud E, Blanchard F, Charrier C, Gouin F, Redini F, Heymann D: Leukaemia inhibitory factor (lif) is expressed in hypertrophic chondrocytes and vascular sprouts during osteogenesis. Cytokine 2002, 20:224-230.
  • [102]Sheng Z, Pennica D, Wood WI, Chien KR: Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 1996, 122:419-428.
  • [103]Herholz J, Meloni A, Marongiu M, Chiappe F, Deiana M, Herrero CR, Zampino G, Hamamy H, Zalloum Y, Waaler PE, Crisponi G, Crisponi L, Rutsch F: Differential secretion of the mutated protein is a major component affecting phenotypic severity in CRLF1-associated disorders. Eur J Hum Genet 2011, 19:525-533.
  • [104]Sims NA: gp130 Signaling in bone cell biology: multiple roles revealed by analysis of genetically altered mice. Mol Cell Endocrinol 2009, 310:30-39.
  • [105]Rousseau F, Chevalier S, Guillet C, Ravon E, Diveu C, Froger J, Barbier F, Grimaud L, Gascan H: Ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin share a conserved binding site on the ciliary neurotrophic factor receptor alpha chain. J Biol Chem 2008, 283:30341-30350.
  • [106]Stanke M, Duong CV, Pape M, Geissen M, Burbach G, Deller T, Gascan H, Otto C, Parlato R, Schütz G, Rohrer H: Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development 2006, 133:141-150.
  • [107]Alexander WS, Rakar S, Robb L, Farley A, Willson TA, Zhang JG, Hartley L, Kikuchi Y, Kojima T, Nomura H, Hasegawa M, Maeda M, Fabri L, Jachno K, Nash A, Metcalf D, Nicola NA, Hilton DJ: Suckling defect in mice lacking the soluble haemopoietin receptor NR6. Curr Biol 1999, 9:605-608.
  • [108]Forger NG, Prevette D, deLapeyrière O, Bovis B, Wang S, Bartlett P, Oppenheim RW: Cardiotrophin-like cytokine/cytokine-like factor 1 is an essential trophic factor for lumbar and facial motoneurons in vivo. J Neurosci 2003, 23:8854-8858.
  • [109]Cormier-Daire V, Geneviève D, Munnich A, Merrer M: New insights in congenital bowing of the femora. Clin Genet 2004, 66:169-176.
  • [110]Sartoris DJ, Luzzatti L, Weaver DD, Macfarlane JD, Hollister DW, Parker BR: Type IX Ehlers-Danlos syndrome. A new variant with pathognomonic radiographic features. Radiology 1984, 152:665-670.
  • [111]Farra C, Piquet C, Guillaume M, D’Ercole C, Philip N: Congenital bowing of long bones: prenatal ultrasound findings and diagnostic dilemmas. Fetal Diagn Ther 2002, 17:236-239.
  • [112]Bicknell LS, Farrington-Rock C, Shafeghati Y, Rump P, Alanay Y, Alembik Y, Al-Madani N, Firth H, Karimi-Nejad MH, Kim CA, Leask K, Maisenbacher M, Moran E, Pappas JG, Prontera P, de Ravel T, Fryns J-P, Sweeney E, Fryer A, Unger S, Wilson LC, Lachman RS, Rimoin DL, Cohn DH, Krakow D, Robertson SP: A molecular and clinical study of Larsen syndrome caused by mutations in FLNB. J Med Genet 2007, 44:89-98.
  • [113]Angle C: Congenital bowing and angulation of long bones. Pediatrics 1954, 13:257-268.
  • [114]Austin G, Gold R, Mirra J: Long-limbed campomelic dwarfism. A radiologic and pathologic study. Am J Dis Child 1980, 134:1035-1042.
  • [115]Spranger J, Hall B: Spectrum of Schwartz‒Jampel syndrome includes micromelic chondrodysplasia, kyphomelic dysplasia, and Burton disease. Am J Med Genet 2000, 94:287-295.
  • [116]Gaspar IM, Saldanha T, Cabral P, Vilhena MM, Tuna M, Costa C, Dagoneau N, Daire VC, Hennekam RCM: Long-term follow-up in Stuve-Wiedemann syndrome: a clinical report. Am J Med Genet A 2008, 146A:1748-1753.
  • [117]Giedion A: Heterogeneity in Schwartz-Jampel chondrodystrophic myotonia. Pediatr Radiol 1997, 27:454.
  • [118]Catavorello A, Vitale SG, Rossetti D, Caldaci L, Panella MM: Case report of prenatal diagnosis of Stüve-Wiedemann Syndrome in a woman with another child affected too. J Prenat Med 2013, 7:35-38.
  • [119]Shea KG, Apel PJ, Hutt NA, Guarino J: Valgus slipped capital femoral epiphysis without posterior displacement: two case reports. J Pediatr Orthop B 2007, 16:201-203.
  • [120]Injarie A, Narang A, Idrees Z, Saggar A, Nischal K: Ocular treatment of children with Stuve-Wiedemann Syndrome. Cornea 2012, 31:269-272.
  • [121]Bonini S, Rama P, Olzi D, Lambiase A: Neurotrophic keratitis. Eye (Lond) 2003, 17:989-995.
  • [122]Seay AR, Ziter FA: Malignant hyperpyrexia in a patient with Schwartz-Jampel syndrome. J Pediatr 1978, 93:83-84.
  • [123]Fowler W, Layzer R, Taylor R, Eberle E, Sims G, Munsat T, Philippart M, Wilson B: The Schwartz-Jampel syndrome. Its clinical, physiological and histological expressions. J Neurol Sci 1974, 22:127-146.
  文献评价指标  
  下载次数:9次 浏览次数:10次