期刊论文详细信息
Neural Development
Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input
William Guido5  Michael A. Fox2  Martha E. Bickford5  Emily K. Dilger1  Thomas E. Krahe3  Rana N. El-Danaf4 
[1] Society for Neuroscience, Washington D.C. 20005, USA;Department of Biological Sciences, Virginia Tech, Blacksburg 24061, VA, USA;Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond 23298, VA, USA;Departments of Neuroscience, Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, La Jolla 92093, CA, USA;Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville 40292, KY, USA
关键词: math5 null;    Dendritic development;    Retinal ganglion cells;    Relay cells;    Retinogeniculate pathway;    Dorsal lateral geniculate nucleus;   
Others  :  1220765
DOI  :  10.1186/s13064-015-0046-6
 received in 2015-01-05, accepted in 2015-07-01,  发布年份 2015
PDF
【 摘 要 】

Background

The dorsal lateral geniculate nucleus (dLGN) of the mouse has been an important experimental model for understanding thalamic circuit development. The developmental remodeling of retinal projections has been the primary focus, however much less is known about the maturation of their synaptic targets, the relay cells of the dLGN. Here we examined the growth and maturation of relay cells during the first few weeks of life and addressed whether early retinal innervation affects their development. To accomplish this we utilized the math5 null (math5 −/− ) mouse, a mutant lacking retinal ganglion cells and central projections.

Results

The absence of retinogeniculate axon innervation led to an overall shrinkage of dLGN and disrupted the pattern of dendritic growth among developing relay cells. 3-D reconstructions of biocytin filled neurons from math5 −/− mice showed that in the absence of retinal input relay cells undergo a period of exuberant dendritic growth and branching, followed by branch elimination and an overall attenuation in dendritic field size. However, math5 −/− relay cells retained a sufficient degree of complexity and class specificity, as well as their basic membrane properties and spike firing characteristics.

Conclusions

Retinal innervation plays an important trophic role in dLGN development. Additional support perhaps arising from non-retinal innervation and signaling is likely to contribute to the stabilization of their dendritic form and function.

【 授权许可】

   
2015 El-Danaf et al.

【 预 览 】
附件列表
Files Size Format View
20150724081335223.pdf 2990KB PDF download
Fig. 10. 74KB Image download
Fig. 9. 56KB Image download
Fig. 8. 62KB Image download
Fig. 7. 95KB Image download
Fig. 6. 36KB Image download
Fig. 5. 67KB Image download
Fig. 4. 133KB Image download
Fig. 3. 77KB Image download
Fig. 2. 62KB Image download
Fig. 1. 12KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Angevine JB: Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J CompNeurol 1970, 139:129-88.
  • [2]Avwenagha O, Bird MM, Lieberman AR, Yan Q, Campbell G: Patterns of expression of brain-derived neurotrophic factor and tyrosine kinase B mRNAs and distribution and ultrastructural localization of their proteins in the visual pathway of the adult rat. Neurosci 2006, 140:913-28.
  • [3]Bansal A, Singer JH, Hwang BJ, Xu W, Beaudet A, Feller MB: Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J Neurosci 2000, 20(20):7672-81.
  • [4]Belhage B, Hansen GH, Elster L, Schousboe L, Schousboe A: Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function. Perspect Dev Neurobiol 1998, 5(2–3):235-46.
  • [5]Bickford ME, Slusarczyk A, Dilger EK, Krahe TE, Kucuk C, Guido W: Synaptic development of the mouse dorsal lateral geniculate nucleus. J Comp Neurol 2010, 518:622-35.
  • [6]Brandes JS: Dendritic branching patterns in lateral geniculate nucleus following deafferentation. Exp Neurol 1971, 31(3):444-50.
  • [7]Brooks JM, Su J, Levy C, Wang JS, Seabrook TA, Guido W, et al.: A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep 2013, 5(3):573-81.
  • [8]Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL: Math5 encodes a murice basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 1998, 125:4821-33.
  • [9]Brown NL, Pate S, Brzezinsk J, Glaser T: Math5 is required for retinal ganglion cell and optic nerve formation. Development 2001, 126:2497-508.
  • [10]Brzezinski JA, Brown NL, Tanikawa A, Bush RA, Sieving PA, Vitaterna MH, et al.: Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Invest Ophthal & Vis Sci 2005, 46(7):2540-51.
  • [11]Caleo M, Medini P, von Bartheld CS, Maffei L: Provision of brain-derived neurotrophic factor via anterograde transport from the eye preserves the physiological responses of axotomized geniculate neurons. J Neurosci 2003, 23(1):287-96.
  • [12]Callaway EM, Borrell V: Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: influence of retinal input. J Neurosci 2011, 31(20):7456-70.
  • [13]Chen C, Regehr WG: Developmental remodeling of the retinogeniculate synapse. Neuron 2000, 28(3):955-66.
  • [14]Cline H, Haas K: The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotropic hypothesis. J Physiol 2008, 586:1509-17.
  • [15]Cohen-Cory S, Lom B: Neurotrophic regulation of retinal ganglion cell synaptic connectivity: from axons and dendrites to synapses. Int J Dev Biol 2004, 48(8–9):947-56.
  • [16]Cullen MJ, Kaiserman-Abramof IR: Cytological organization of the dorsal lateral geniculate nuclei in mutant anophthalmic and postnatally enucleated mice. J Neurocytol 1976, 5(4):407-24.
  • [17]De Biasi S, Amadeo A, Arcelli P, Frassoni C, Spreafico R: Postnatal development of GABA-immunoreactive terminals in the reticular and ventrobasal nuclei of the rat thalamus: a light and electron microscopic study. Neurosci 1997, 78(2):503-15.
  • [18]Demas J, Eglen SJ, Wong RO: Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J Neurosci 2003, 23:2851-60.
  • [19]Dilger EK, Shin HS, Guido W: Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse. J Physiol 2011, 589:919-37.
  • [20]Erisir A, Van Horn SC, Bickford ME, Sherman SM: Immunocytochemisty and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J Comp Neurol 1997, 377(4):535-49.
  • [21]Fujiyama F, Hioki H, Tomioka R, Taki K, Tamamaki N, Nomura S, et al.: Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol 2003, 465(2):234-49.
  • [22]Godement P, Salaün J, Imbert M: Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol 1984, 230(4):552-75.
  • [23]Guido W: Refinement of the retinogeniculate pathway. J Physiol 2008, 586:4357-62.
  • [24]Hammer S, Carrillo GL, Govindaiah G, Monavarfeshani A, Bircher JS, Su J, et al.: Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus. Neural Dev 2014, 9:16. BioMed Central Full Text
  • [25]Heumann D, Rabinowicz T: Postnatal development of the dorsal lateral geniculate nucleus in the normal and enucleated albino mouse. Exp Brain Res 1980, 38:75-85.
  • [26]Hong YK, Chen C: Wiring and rewiring of the retinogeniculate synapse. Curr Opin Neurobiol 2011, 21(2):228-37.
  • [27]Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB, Ullian EM, et al.: Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 2008, 59:425-38.
  • [28]Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W: Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 2005, 22:661-76.
  • [29]Kaiserman-Abramof IR: Intrauterine enucleation of normal mice mimics a structural compensatory response in the geniculate of eyeless mutant mice. Brain Res 1983, 270:149-53.
  • [30]Krahe TE, El-Danaf RN, Dilger EK, Henderson SC, Guido W: Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. J Neurosci 2011, 31:17437-48.
  • [31]Land PW, Kyonka E, Shamalla-Hannah L: Vesicular glutamate transporters in the lateral geniculate nucleus: expression of VGLUT2 by retinal terminals. Brain Res 2004, 996:251-4.
  • [32]Li J, Bickford ME, Guido W: Distinct firing properties of higher order thalamic relay neurons. J Neurophysiol 2003, 90(1):291-9.
  • [33]Liu X, Chen C: Different roles for AMPA and NMDA receptors in transmission at the immature retinogeniculate synapse. J Neurophyisol 2008, 99(2):629-43.
  • [34]Lohmann C, Myhr KL, Wong RO: Transmitter-evoked local calcium release stabilized developing dendrites. Nature 2002, 418(6894):177-81.
  • [35]Maccione A, Hennig MH, Gandolfo M, Muthmann O, van Coppenhagen J, Eglen SJ, et al.: Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. J Physiol 2013, 592(Pt7):1545-63.
  • [36]MacLeod N, Turner C, Edgar J: Properties of developing lateral geniculate neurones in the mouse. Int J Dev Neurosci 1996, 15(2):205-24.
  • [37]McAllister AK: Cellular and molecular mechanisms of dendrite growth. Cereb Cortex 2000, 10(10):963-73.
  • [38]McCormick DA, Trent F, Ramoa AS: Postnatal development of synchronized network oscillations in the ferret dorsal lateral geniculate and perigeniculate nuclei. J Neurosci 1995, 15(8):5739-52.
  • [39]Menna E, Cenni MC, Naska S, Maffei L: The anterograde transported BDNF promotes retinal axon remodeling during eye specific segregation within LGN. Mol Cell Neurosci 2003, 24(4):972-83.
  • [40]Mooney R, Penn AA, Gallego R, Shatz CJ: Thalamic relay of spontaneous retinal activity prior to vision. Neuron 1996, 17(1):979-90.
  • [41]Moshiri A, Gonzalez E, Tagawa K, Maeda H, Wang M, Frishman LJ, et al.: Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Develop Biol 2008, 316:214-27.
  • [42]Osterhout JA, El-Danaf RN, Nguyen PL, Huberman AD: Birthdate and outgrowth timing predict cellular mechanisms of axons target matching in the developing visual pathway. Cell Rep 2014, 8(4):10006-17.
  • [43]Parnavelas JG, Mounty EJ, Bradford R, Lieberman AR: The postnatal development of neurons in the dorsal lateral geniculate nucleus of the rat: a Golgi study. J Comp Neuro 1977, 171(4):481-99.
  • [44]Riccio RV, Matthews MA: Effects of intraocular tetrodotoxin on the postnatal development of the dorsal lateral geniculate nucleus of the rat: a Golgi analysis. J Neurosci Res 1987, 17(4):440-51.
  • [45]Saul SM, Brzezinski JA 4th, Altschuler RA, Shore SE, Rudolph DD, Kabara LL, et al.: Math5 expression and function in the central auditory system. Mol Cell Neurosci 2008, 37(1):153-69.
  • [46]Seabrook TA, El-Danaf RN, Krahe TE, Fox MA, Guido W: Retinal input regulates the timing of corticogeniculate innervation. J Neurosci 2013, 33(24):10085-97.
  • [47]Shatz CJ: The prenatal development of the cat’s retinogeniculate pathway. J Neurosci 1983, 3:482-99.
  • [48]Sherman SM: Thalamic relays and cortical functioning. Pro Brain Res 2005, 149:107-26.
  • [49]Sherman SM, Guillery RW: The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 2002, 357(1428):1695-708.
  • [50]Sherren N, Pappas BA. Selective acetylcholine and dopamine lesions in neonatal rats produce distinct patterns of cortical dendritic atrophy in adulthood. Neurosci. 136(2):445–56
  • [51]Su J, Haner CV, Imbery TE, Brooks JM, Morhardt DM, Gorse K, et al.: Reelin is required for class-specific retinogeniculate targeting. J Neurosci 2001, 31(2):575-86.
  • [52]Sutton JK, Brunso-Bechtold JK: Dendritic development in the dorsal lateral geniculate nucleus of ferrets in the postnatal absence of retinal input: a Golgi study. J Neurobiol 1993, 24(3):317-34.
  • [53]Torborg CL, Feller MB: Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 2005, 76(4):213-35.
  • [54]Triplett JW, Pfeiffenberger C, Yamada J, Stafford BK, Sweeney NT, Litke AM, et al.: Competition is a driving force in topographic mapping. Proc Natl Acad Sci 2001, 108(47):19060-5.
  • [55]Tucker P, Laemle L, Munson L, Kanekar S, Oliver ER, Brown N, et al.: The eyeless mouse mutation (ey1) removes an alternative start codon from the Rx/rax homeobox gene. Genesis 2001, 31(1):43-53.
  • [56]Vaughn JE: Review: fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 1989, 3:255-85.
  • [57]Vaughn JE, Barber RP, Sims TJ: Dendritic development and preferential growth into synaptogenic fields: a quantitative study of golgi-impregnated spinal motor neurons. Synapse 1988, 2:69-78.
  • [58]Verma AS, Fitzpatrick DR: Anophthalmia and microphthalmia. Orphanet J Rare Dis 2007, 2:47. BioMed Central Full Text
  • [59]Wahle P, Di Cristo G, Schwerdtfeger G, Englehardt M, Berardi N, Maffei L: Differential effects of cortical neurotrophic factors on development of lateral geniculate nucleus and superior colliculus neurons: anterograde and retrograde actions. Devel 2003, 130(3):611-22.
  • [60]Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, et al.: Requirement for math5 in the development of retinal ganglion cells. Genes Dev 2001, 15:24-9.
  • [61]Wee R, Castrucci AM, Provencio I, Gan L, Van Gelder RN: Loss of photic entrainment and altered free-running circadian rhythms in math5_ / _ mice. J Neurosci 2002, 22(23):10427-33.
  • [62]Williams AL, Reese BE, Jeffery G: Role of retinal afferents in regulating growth and shape of the lateral geniculate nucleus. J Comp Neurol 2002, 445(3):269-77.
  • [63]Winkelmann E, Garey LJ, Brauer K: Ultrastructural development of the dorsal lateral geniculate nucleus of genetically microphthalmic mice. Exp Brain Res 1985, 60:527-34.
  • [64]Ziburkus J, Guido W: Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J Neurophysiol 2006, 96(5):2775-84.
  文献评价指标  
  下载次数:0次 浏览次数:4次