Molecular Pain | |
Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity | |
Uhtaek Oh1  Dong-Jin Yang1  Young Duk Yang2  Jooyoung Jung1  Hawon Cho1  Byeongjun Lee1  | |
[1] Sensory Research Center, CRI, College of Pharmacy, Seoul National University, Gwanak, Daehak-Ro 1, Seoul 151-742, Republic of Korea;Department of pharmacy, College of Pharmacy, CHA University, Gyeonggi-do, Republic of Korea | |
关键词: Rheobase; Hyperalgesia; DRG neuron; Inflammatory pain; Neuropathic pain; ANO1; | |
Others : 861925 DOI : 10.1186/1744-8069-10-5 |
|
received in 2013-12-15, accepted in 2014-01-20, 发布年份 2014 | |
【 摘 要 】
Background
Various pathological conditions such as inflammation or injury can evoke pain hypersensitivity. That represents the response to innocuous stimuli or exaggerated response to noxious stimuli. The molecular mechanism based on the pain hypersensitivity is associated with changes in many of ion channels in dorsal-root ganglion (DRG) neurons. Anoctamin 1 (ANO1/TMEM16A), a Ca2+ activated chloride channel is highly visible in small DRG neurons and responds to heat. Mice with an abolished function of ANO1 in DRG neurons demonstrated attenuated pain-like behaviors when exposed to noxious heat, suggesting a role in acute thermal nociception. In this study, we further examined the function of ANO1 in mediating inflammation- or injury-induced hyperalgesia or allodynia.
Results
Using Advillin/Ano1fl/fl (Adv/Ano1fl/fl) mice that have a functional ablation of Ano1 mainly in DRG neurons, we were able to determine its role in mediating thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury. The thermal hyperalgesia and mechanical allodynia induced by carrageenan injection and spared-nerve injury were significantly reduced in Adv/Ano1fl/fl mice. In addition, flinching or licking behavior after bradykinin or formalin injection was also significantly reduced in Adv/Ano1fl/fl mice. Since pathological conditions augment nociceptive behaviors, we expected ANO1′s contribution to the excitability of DRG neurons. Indeed, the application of inflammatory mediators reduced the threshold for action potential (rheobase) or time for induction of the first action potential in DRG neurons isolated from control (Ano1fl/fl) mice. These parameters for neuronal excitability induced by inflammatory mediators were not changed in Adv/Ano1fl/fl mice, suggesting an active contribution of ANO1 in augmenting the neuronal excitability.
Conclusions
In addition to ANO1's role in mediating acute thermal pain as a heat sensor, ANO1 is also capable of augmenting the excitability of DRG neurons under inflammatory or neuropathic conditions and thereby aggravates inflammation- or tissue injury-induced pathological pain.
【 授权许可】
2014 Lee et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725005507918.pdf | 786KB | download | |
42KB | Image | download | |
31KB | Image | download | |
42KB | Image | download | |
47KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Basbaum AI, Bautista DM, Scherrer G, Julius D: Cellular and molecular mechanisms of pain. Cell 2009, 139(2):267-284.
- [2]Gangadharan V, Kuner R: Pain hypersensitivity mechanisms at a glance. Dis Model & Mech 2013, 6(4):889-895.
- [3]Perl ER: Ideas about pain, a historical view. Nat Rev Neurosci 2007, 8(1):71-80.
- [4]Patapoutian A, Tate S, Woolf CJ: Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 2009, 8(1):55-68.
- [5]Vay L, Gu C, McNaughton PA: The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol 2012, 165(4):787-801.
- [6]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389(6653):816-824.
- [7]Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D: The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21(3):531-543.
- [8]Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, et al.: Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A 2000, 97(11):6155-6160.
- [9]Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288(5464):306-313.
- [10]Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, et al.: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405(6783):183-187.
- [11]Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004, 41(6):849-857.
- [12]Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM: Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 2005, 102(34):12248-12252.
- [13]Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K: TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 2005, 115(9):2393-2401.
- [14]Katsura H, Obata K, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Sakagami M, Noguchi K: Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol 2006, 200(1):112-123.
- [15]Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T: TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 2009, 106(4):1273-1278.
- [16]Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, et al.: TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 2008, 455(7217):1210-1215.
- [17]Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 2008, 322(5901):590-594.
- [18]Schroeder BC, Cheng T, Jan YN, Jan LY: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 2008, 134(6):1019-1029.
- [19]Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, et al.: Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A 2012, 109(40):16354-16359.
- [20]Romanenko VG, Catalan MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE: Tmem16A encodes the Ca2 + -activated Cl- channel in mouse submandibular salivary gland acinar cells. J Biol Chem 2010, 285(17):12990-13001.
- [21]Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM: Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 2009, 587(Pt 20):4887-4904.
- [22]Manoury B, Tamuleviciute A, Tammaro P: TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells. J Physiol 2010, 588(Pt 13):2305-2314.
- [23]Cho H, Yang YD, Lee J, Lee B, Kim T, Jang Y, Back SK, Na HS, Harfe BD, Wang F, et al.: The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci 2012, 15(7):1015-1021.
- [24]Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87(2):149-158.
- [25]Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32(1):77-88.
- [26]Hasegawa H, Abbott S, Han BX, Qi Y, Wang F: Analyzing somatosensory axon projections with the sensory neuron-specific Advillin gene. J Neurosci 2007, 27(52):14404-14414.
- [27]Keele CA: The chemistry of pain production. Proc R Soc Med 1967, 60(4):419-422.
- [28]Dray A, Patel IA, Perkins MN, Rueff A: Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br J Pharmacol 1992, 107(4):1129-1134.
- [29]Liu B, Linley JE, Du X, Zhang X, Ooi L, Zhang H, Gamper N: The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K + channels and activation of Ca2 + -activated Cl- channels. J Clin Invest 2010, 120(4):1240-1252.
- [30]Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K: The formalin test: an evaluation of the method. Pain 1992, 51(1):5-17.
- [31]Bolcskei K, Helyes Z, Szabo A, Sandor K, Elekes K, Nemeth J, Almasi R, Pinter E, Petho G, Szolcsanyi J: Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain 2005, 117(3):368-376.
- [32]Zhang X, Pietra C, Lovati E, de Groat WC: Activation of neurokinin-1 receptors increases the excitability of guinea pig dorsal root ganglion cells. J Pharmacol Exp Ther 2012, 343(1):44-52.
- [33]Huang F, Wang X, Ostertag EM, Nuwal T, Huang B, Jan YN, Basbaum AI, Jan LY: TMEM16C facilitates Na(+)-activated K + currents in rat sensory neurons and regulates pain processing. Nat Neurosci 2013, 16(9):1284-1290.
- [34]Maingret F, Coste B, Padilla F, Clerc N, Crest M, Korogod SM, Delmas P: Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. The Journal of General Physiology 2008, 131(3)):211-225.
- [35]Ma C, Greenquist KW, Lamotte RH: Inflammatory mediators enhance the excitability of chronically compressed dorsal root ganglion neurons. J Neurophysiol 2006, 95(4):2098-2107.
- [36]Rock JR, O’Neal WK, Gabriel SE, Randell SH, Harfe BD, Boucher RC, Grubb BR: Transmembrane protein 16A (TMEM16A) is a Ca2 + -regulated Cl- secretory channel in mouse airways. J Biol Chem 2009, 284(22):14875-14880.
- [37]McMahon SB, Bennett DLH, Bevan S: Inflammatory mediators and modulators of pain. In Wall and Melzack's textbook of Pain . Edited by McMahon SB, Koltzenburg M. Philadelphia: Elsevier; 2008:72.
- [38]Gold MS, Gebhart GF: Nociceptor sensitization in pain pathogenesis. Nat Med 2010, 16(11):1248-1257.
- [39]Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA: Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 2001, 534(Pt 3):813-825.
- [40]Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW: Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci U S A 2003, 100(21):12480-12485.
- [41]Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M: Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 2005, 1:3.
- [42]Plant TD, Zollner C, Kepura F, Mousa SS, Eichhorst J, Schaefer M, Furkert J, Stein C, Oksche A: Endothelin potentiates TRPV1 via ETA receptor-mediated activation of protein kinase C. Mol Pain 2007, 3:35.
- [43]Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D: Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 2001, 411(6840):957-962.
- [44]Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C, et al.: Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 2003, 23(14):6058-6062.
- [45]Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, et al.: TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 2011, 70(3):482-494.
- [46]Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, et al.: Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 2013, 77(1):43-57.
- [47]Alvarez-Leefmans FJ, Leon-Olea M, Mendoza-Sotelo J, Alvarez FJ, Anton B, Garduno R: Immunolocalization of the Na(+)-K(+)-2Cl(-) cotransporter in peripheral nervous tissue of vertebrates. Neuroscience 2001, 104(2):569-582.
- [48]Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA: Chloride regulation in the pain pathway. Brain Res Rev 2009, 60(1):149-170.
- [49]Granados-Soto V, Arguelles CF, Alvarez-Leefmans FJ: Peripheral and central antinociceptive action of Na + -K + -2Cl- cotransporter blockers on formalin-induced nociception in rats. Pain 2005, 114(1–2):231-238.
- [50]Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E: Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 2000, 20(20):7531-7538.
- [51]Laird JM, Garcia-Nicas E, Delpire EJ, Cervero F: Presynaptic inhibition and spinal pain processing in mice: a possible role of the NKCC1 cation-chloride co-transporter in hyperalgesia. Neurosci Lett 2004, 361(1–3):200-203.