期刊论文详细信息
Neural Development
Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain
Andrea H Brand1  Katrina S Gold2 
[1] The Gurdon Institute and Department of Physiology, Development & Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK;Present address: Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
关键词: Brain;    Visual system;    Six;    Optix;    Compartment;    Adhesion;    Stem cell;    Neuroepithelium;   
Others  :  1146407
DOI  :  10.1186/1749-8104-9-18
 received in 2014-05-07, accepted in 2014-06-25,  发布年份 2014
PDF
【 摘 要 】

Background

During early brain development, the organisation of neural progenitors into a neuroepithelial sheet maintains tissue integrity during growth. Neuroepithelial cohesion and patterning is essential for orderly proliferation and neural fate specification. Neuroepithelia are regionalised by the expression of transcription factors and signalling molecules, resulting in the formation of distinct developmental, and ultimately functional, domains.

Results

We have discovered that the Six3/6 family orthologue Optix is an essential regulator of neuroepithelial maintenance and patterning in the Drosophila brain. Six3 and Six6 are required for mammalian eye and forebrain development, and mutations in humans are associated with severe eye and brain malformation. In Drosophila, Optix is expressed in a sharply defined region of the larval optic lobe, and its expression is reciprocal to that of the transcription factor Vsx1. Optix gain- and loss-of-function affects neuroepithelial adhesion, integrity and polarity. We find restricted cell lineage boundaries that correspond to transcription factor expression domains.

Conclusion

We propose that the optic lobe is compartmentalised by expression of Optix and Vsx1. Our findings provide insight into the spatial patterning of a complex region of the brain, and suggest an evolutionarily conserved principle of visual system development.

【 授权许可】

   
2014 Gold and Brand; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150403114257800.pdf 3007KB PDF download
Figure 9. 65KB Image download
Figure 8. 209KB Image download
Figure 7. 227KB Image download
Figure 6. 111KB Image download
Figure 5. 125KB Image download
Figure 4. 218KB Image download
Figure 3. 140KB Image download
Figure 2. 131KB Image download
Figure 1. 111KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]McCaffrey LM, Macara IG: Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol 2011, 21:727-735.
  • [2]Barker N, van de Wetering M, Clevers H: The intestinal stem cell. Genes Dev 2008, 22:1856-1864.
  • [3]Blanpain C, Fuchs E: Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009, 10:207-217.
  • [4]Fish JL, Dehay C, Kennedy H, Huttner WB: Making bigger brains-the evolution of neural-progenitor-cell division. J Cell Sci 2008, 121:2783-2793.
  • [5]Mann RS, Morata G: The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 2000, 16:243-271.
  • [6]Tepass U, Godt D, Winklbauer R: Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr Opin Genet Dev 2002, 12:572-582.
  • [7]Cavodeassi F, Houart C: Brain regionalization: of signaling centers and boundaries. Dev Neurobiol 2012, 72:218-233.
  • [8]Kiecker C, Lumsden A: The role of organizers in patterning the nervous system. Annu Rev Neurosci 2012, 35:347-367.
  • [9]Pasini A, Wilkinson DG: Stabilizing the regionalisation of the developing vertebrate central nervous system. Bioessays 2002, 24:427-438.
  • [10]Reichert H: Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development. Biol Lett 2009, 5:112-116.
  • [11]Urbach R, Technau GM: Dorsoventral patterning of the brain: a comparative approach. Adv Exp Med Biol 2008, 628:42-56.
  • [12]Fraser S, Keynes R, Lumsden A: Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 1990, 344:431-435.
  • [13]Lumsden A: The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 1990, 13:329-335.
  • [14]Alfano C, Studer M: Neocortical arealization: evolution, mechanisms, and open questions. Dev Neurobiol 2013, 73:411-447.
  • [15]O'Leary DD, Chou SJ, Sahara S: Area patterning of the mammalian cortex. Neuron 2007, 56:252-269.
  • [16]Doe CQ: Neural stem cells: balancing self-renewal with differentiation. Development 2008, 135:1575-1587.
  • [17]Egger B, Chell JM, Brand AH: Insights into neural stem cell biology from flies. Philos Trans R Soc Lond B Biol Sci 2008, 363:39-56.
  • [18]Götz M, Huttner WB: The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005, 6:777-788.
  • [19]Brand AH, Livesey FJ: Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron 2011, 70:719-729.
  • [20]Southall TD, Egger B, Gold KS, Brand AH: Regulation of self-renewal and differentiation in the Drosophila nervous system. Cold Spring Harb Symp Quant Biol 2008, 73:523-528.
  • [21]Egger B, Gold KS, Brand AH: Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 2010, 137:2981-2987.
  • [22]Ngo KT, Wang J, Junker M, Kriz S, Vo G, Asem B, Olson JM, Banerjee U, Hartenstein V: Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev Biol 2010, 346:284-295.
  • [23]Orihara-Ono M, Toriya M, Nakao K, Okano H: Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev Biol 2011, 351:163-175.
  • [24]Wang W, Liu W, Wang Y, Zhou L, Tang X, Luo H: Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development. Dev Biol 2011, 350:414-428.
  • [25]Weng M, Haenfler JM, Lee CY: Changes in Notch signaling coordinates maintenance and differentiation of the Drosophila larval optic lobe neuroepithelia. Dev Neurobiol 2012, 72:1376-1390.
  • [26]Yasugi T, Sugie A, Umetsu D, Tabata T: Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 2010, 137:3193-3203.
  • [27]Reddy BV, Rauskolb C, Irvine KD: Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 2010, 137:2397-2408.
  • [28]Gaiano N, Nye JS, Fishell G: Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 2000, 26:395-404.
  • [29]Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y: Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 2004, 6:547-554.
  • [30]Yoon K, Gaiano N: Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 2005, 8:709-715.
  • [31]Doe CQ, Fuerstenberg S, Peng CY: Neural stem cells: from fly to vertebrates. J Neurobiol 1998, 36:111-127.
  • [32]Morante J, Desplan C: Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin Cell Dev Biol 2004, 15:137-143.
  • [33]Sato M, Suzuki T, Nakai Y: Waves of differentiation in the fly visual system. Dev Biol 2013, 380:1-11.
  • [34]Hofbauer A, Campos-Ortega JA: Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Dev Genes Evol 1990, 198:264-274.
  • [35]Meinertzhagen IA, Hanson TE: The development of the optic lobe. In The development of Drosophila melanogaster. Edited by Bate M, Martinez Arias A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1993:1363-1491.
  • [36]Kawakami K, Sato S, Ozaki H, Ikeda K: Six family genes - structure and function as transcription factors and their roles in development. Bioessays 2000, 22:616-626.
  • [37]Seo HC, Drivenes Ø, Ellingsen S, Fjose A: Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mech Dev 1998, 73:45-57.
  • [38]Toy J, Yang JM, Leppert GS, Sundin OH: The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc Natl Acad Sci U S A 1998, 95:10643-10648.
  • [39]Kumar JP: The molecular circuitry governing retinal determination. Biochim Biophys Acta 2009, 1789:306-314.
  • [40]Kumar JP: My what big eyes you have: how the Drosophila retina grows. Dev Neurobiol 2011, 71:1133-1152.
  • [41]Pappu KS, Mardon G: Genetic control of retinal specification and determination in Drosophila. Int J Dev Biol 2004, 48:913-924.
  • [42]Silver SJ, Rebay I: Signaling circuitries in development: insights from the retinal determination gene network. Development 2005, 132:3-13.
  • [43]Seimiya M, Gehring WJ: The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 2000, 127:1879-1886.
  • [44]Weasner B, Salzer C, Kumar JP: Sine oculis, a member of the SIX family of transcription factors, directs eye formation. Dev Biol 2007, 303:756-771.
  • [45]Li Y, Jiang Y, Chen Y, Karandikar U, Hoffman K, Chattopadhyay A, Mardon G: Chen R: optix functions as a link between the retinal determination network and the dpp pathway to control morphogenetic furrow progression in Drosophila. Dev Biol 2013, 381:50-61.
  • [46]Coiffier D, Charroux B, Kerridge S: Common functions of central and posterior Hox genes for the repression of head in the trunk of Drosophila. Development 2008, 135:291-300.
  • [47]Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH: Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 2013, 26:101-112.
  • [48]Kaphingst K, Kunes S: Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell 1994, 78:437-448.
  • [49]Carney TD, Miller MR, Robinson KJ, Bayraktar OA, Osterhout JA, Doe CQ: Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis. Dev Biol 2011, 361:137-146.
  • [50]Green P, Hartenstein AY, Hartenstein V: The embryonic development of the Drosophila visual system. Cell Tissue Res 1993, 273:583-598.
  • [51]Turner FR, Mahowald AP: Scanning electron microscopy of Drosophila melanogaster embryogenesis. III. Formation of the head and caudal segments. Dev Biol 1979, 68:96-109.
  • [52]Egger B, Boone JQ, Stevens NR, Brand AH, Doe CQ: Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev 2007, 2:1.
  • [53]Blair SS: Developmental biology: boundary lines. Nature 2003, 424:379-381.
  • [54]Dahmann C, Oates AC, Brand M: Boundary formation and maintenance in tissue development. Nat Rev Genet 2011, 12:43-55.
  • [55]Irvine KD, Rauskolb C: Boundaries in development: formation and function. Annu Rev Cell Dev Biol 2001, 17:189-214.
  • [56]Martin AC, Wieschaus EF: Tensions divide. Nat Cell Biol 2010, 12:5-7.
  • [57]McNeill H: Sticking together and sorting things out: adhesion as a force in development. Nat Rev Genet 2000, 1:100-108.
  • [58]Monier B, Pelissier-Monier A, Sanson B: Establishment and maintenance of compartmental boundaries: role of contractile actomyosin barriers. Cell Mol Life Sci 2011, 68:1897-1910.
  • [59]Vincent JP, Irons D: Developmental biology: tension at the border. Curr Biol 2009, 19:R1028-R1030.
  • [60]Wang S, Tulina N, Carlin DL, Rulifson EJ: The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proc Natl Acad Sci U S A 2007, 104:19873-19878.
  • [61]Evans CJ, Olson JM, Ngo KT, Kim E, Lee NE, Kuoy E, Patananan AN, Sitz D, Tran P, Do MT, Yackle K, Cespedes A, Hartenstein V, Call GB, Banerjee U: G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 2009, 6:603-605.
  • [62]Erclik T, Hartenstein V, Lipshitz HD, McInnes RR: Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems. Curr Biol 2008, 18:1278-1287.
  • [63]Burmeister M, Novak J, Liang MY, Basu S, Ploder L, Hawes NL, Vidgen D, Hoover F, Goldman D, Kalnins VI, Roderick TH, Taylor BA, Hankin MH, McInnes RR: Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 1996, 12:376-384.
  • [64]Muthuswamy SK, Xue B: Cell polarity as a regulator of cancer cell behavior plasticity. Annu Rev Cell Dev Biol 2012, 28:599-625.
  • [65]Perez-Pomares JM, Foty RA: Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 2006, 28:809-821.
  • [66]Badouel C, Garg A, McNeill H: Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol 2009, 21:837-843.
  • [67]Halder G, Johnson RL: Hippo signaling: growth control and beyond. Development 2011, 138:9-22.
  • [68]Reddy BV, Irvine KD: The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 2008, 135:2827-2838.
  • [69]Kawamori H, Tai M, Sato M, Yasugi T, Tabata T: Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev Growth Differ 2011, 53:653-667.
  • [70]Clark HF, Brentrup D, Schneitz K, Bieber A, Goodman C, Noll M: Dachsous encodes a member of the cadherin superfamily that controls imaginal disc morphogenesis in Drosophila. Genes Dev 1995, 9:1530-1542.
  • [71]Matakatsu H, Blair SS: Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development 2004, 131:3785-3794.
  • [72]Sopko R, Silva E, Clayton L, Gardano L, Barrios-Rodiles M, Wrana J, Varelas X, Arbouzova NI, Shaw S, Saburi S, Matakatsu H, Blair S, McNeill H: Phosphorylation of the tumor suppressor fat is regulated by its ligand Dachsous and the kinase discs overgrown. Curr Biol 2009, 19:1112-1117.
  • [73]Willecke M, Hamaratoglu F, Sansores-Garcia L, Tao C, Halder G: Boundaries of Dachsous Cadherin activity modulate the Hippo signaling pathway to induce cell proliferation. Proc Natl Acad Sci U S A 2008, 105:14897-14902.
  • [74]Lee T, Luo L: Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999, 22:451-461.
  • [75]Hay BA, Wolff T, Rubin GM: Expression of baculovirus P35 prevents cell death in Drosophila. Development 1994, 120:2121-2129.
  • [76]Wei SY, Escudero LM, Yu F, Chang LH, Chen LY, Ho YH, Lin CM, Chou CS, Chia W, Modolell J, Hsu JC: Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Dev Cell 2005, 8:493-504.
  • [77]Le Borgne R, Bellaiche Y, Schweisguth F: Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr Biol 2002, 12:95-104.
  • [78]Oda H, Uemura T, Harada Y, Iwai Y, Takeichi M: A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion. Dev Biol 1994, 165:716-726.
  • [79]Tepass U, Gruszynski-DeFeo E, Haag TA, Omatyar L, Torok T, Hartenstein V: Shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev 1996, 10:672-685.
  • [80]Uemura T, Oda H, Kraut R, Hayashi S, Kotaoka Y, Takeichi M: Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev 1996, 10:659-671.
  • [81]Wang F, Dumstrei K, Haag T, Hartenstein V: The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Dev Biol 2004, 270:350-363.
  • [82]Oda H, Takeichi M: Evolution: structural and functional diversity of cadherin at the adherens junction. J Cell Biol 2011, 193:1137-1146.
  • [83]Rujano MA, Sanchez-Pulido L, Pennetier C, le Dez G, Basto R: The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat Cell Biol 2013, 15:1294-1306.
  • [84]Inoue T, Tanaka T, Takeichi M, Chisaka O, Nakamura S, Osumi N: Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development 2001, 128:561-569.
  • [85]Fung S, Wang F, Chase M, Godt D, Hartenstein V: Expression profile of the cadherin family in the developing Drosophila brain. J Comp Neurol 2008, 506:469-488.
  • [86]Garcia-Bellido A, Santamaria P: Developmental analysis of the wing disc in the mutant engrailed of Drosophila melanogaster. Genetics 1972, 72:87-104.
  • [87]Kornberg T: Engrailed: a gene controlling compartment and segment formation in Drosophila. Proc Natl Acad Sci U S A 1981, 78:1095-1099.
  • [88]Lawrence PA, Morata G: Compartments in the wing of Drosophila: a study of the engrailed gene. Dev Biol 1976, 50:321-337.
  • [89]Morata G, Lawrence PA: Control of compartment development by the engrailed gene in Drosophila. Nature 1975, 255:614-617.
  • [90]Fischbach KF, Dittrich APM: The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 1989, 258:441-475.
  • [91]Morante J, Desplan C: The color-vision circuit in the medulla of Drosophila. Curr Biol 2008, 18:553-565.
  • [92]Li X, Erclik T, Bertet C, Chen Z, Voutev R, Venkatesh S, Morante J, Celik A, Desplan C: Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 2013, 498:456-462.
  • [93]Suzuki T, Kaido M, Takayama R, Sato M: A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev Biol 2013, 380:12-24.
  • [94]Baumgardt M, Karlsson D, Terriente J, Diaz-Benjumea FJ, Thor S: Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 2009, 139:969-982.
  • [95]Brody T, Odenwald WF: Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev Biol 2000, 226:34-44.
  • [96]Cleary MD, Doe CQ: Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes Dev 2006, 20:429-434.
  • [97]Grosskortenhaus R, Pearson BJ, Marusich A, Doe CQ: Regulation of temporal identity transitions in Drosophila neuroblasts. Dev Cell 2005, 8:193-202.
  • [98]Grosskortenhaus R, Robinson KJ, Doe CQ: Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. Genes Dev 2006, 20:2618-2627.
  • [99]Isshiki T, Pearson B, Holbrook S, Doe CQ: Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 2001, 106:511-521.
  • [100]Kambadur R, Koizumi K, Stivers C, Nagle J, Poole SJ, Odenwald WF: Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 1998, 12:246-260.
  • [101]Lin S, Lee T: Generating neuronal diversity in the Drosophila central nervous system. Dev Dyn 2012, 241:57-68.
  • [102]Mettler U, Vogler G, Urban J: Timing of identity: spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by Seven-up and Prospero. Development 2006, 133:429-437.
  • [103]Novotny T, Eiselt R, Urban J: Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development 2002, 129:1027-1036.
  • [104]Pearson BJ, Doe CQ: Regulation of neuroblast competence in Drosophila. Nature 2003, 425:624-628.
  • [105]Tran KD, Doe CQ: Pdm and Castor close successive temporal identity windows in the NB3-1 lineage. Development 2008, 135:3491-3499.
  • [106]Tsuji T, Hasegawa E, Isshiki T: Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development 2008, 135:3859-3869.
  • [107]Li X, Chen Z, Desplan C: Temporal patterning of neural progenitors in Drosophila. Curr Top Dev Biol 2013, 105:69-96.
  • [108]Wang W, Li Y, Zhou L, Yue H, Luo H: Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe. Biochem Biophys Res Commun 2011, 410:714-720.
  • [109]Yasugi T, Umetsu D, Murakami S, Sato M, Tabata T: Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 2008, 135:1471-1480.
  • [110]Hayden MA, Akong K, Peifer M: Novel roles for APC family members and Wingless/Wnt signaling during Drosophila brain development. Dev Biol 2007, 305:358-376.
  • [111]Kozmik Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, Holland LZ, Pestarino M, Benes V, Candiani S: Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol 2007, 306:143-159.
  • [112]Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M: Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 2003, 113:853-865.
  • [113]Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P: Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 1995, 121:4045-4055.
  • [114]Posnien N, Schinko J, Grossmann D, Shippy TD, Konopova B, Bucher G: RNAi in the red flour beetle (Tribolium). Cold Spring Harb Protoc 2009. doi:10.1101/pdb.prot5256
  • [115]Poustka AJ, Kuhn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G: A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 2007, 8:R85.
  • [116]Santagata S, Resh C, Hejnol A, Martindale MQ, Passamaneck YJ: Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system. EvoDevo 2012, 3:3.
  • [117]Seo HC, Curtiss J, Mlodzik M, Fjose A: Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech Dev 1999, 83:127-139.
  • [118]Sinigaglia C, Busengdal H, Leclere L, Technau U, Rentzsch F: The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 2013, 11:e1001488.
  • [119]Steinmetz PR, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D: Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 2010, 1:14.
  • [120]Wei Z, Yaguchi J, Yaguchi S, Angerer RC, Angerer LM: The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development 2009, 136:1179-1189.
  • [121]Zhou X, Hollemann T, Pieler T, Gruss P: Cloning and expression of xSix3, the Xenopus homologue of murine Six3. Mech Dev 2000, 91:327-330.
  • [122]Christensen KL, Patrick AN, McCoy EL, Ford HL: The six family of homeobox genes in development and cancer. Adv Cancer Res 2008, 101:93-126.
  • [123]Li X, Perissi V, Liu F, Rose DW, Rosenfeld MG: Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science 2002, 297:1180-1183.
  • [124]Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G: Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 2003, 17:368-379.
  • [125]Aldahmesh MA, Khan AO, Hijazi H, Alkuraya FS: Homozygous truncation of SIX6 causes complex microphthalmia in humans. Clin Genet 2013, 84:198-199.
  • [126]Gallardo ME, Lopez-Rios J, Fernaud-Espinosa I, Granadino B, Sanz R, Ramos C, Ayuso C, Seller MJ, Brunner HG, Bovolenta P, de Rodriguez Cordoba S: Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics 1999, 61:82-91.
  • [127]Gallardo ME, De Rodriguez Cordoba S, Schneider AS, Dwyer MA, Ayuso C, Bovolenta P: Analysis of the developmental SIX6 homeobox gene in patients with anophthalmia/microphthalmia. Am J Med Genet A 2004, 129A:92-94.
  • [128]Geng X, Speirs C, Lagutin O, Inbal A, Liu W, Solnica-Krezel L, Jeong Y, Epstein DJ, Oliver G: Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell 2008, 15:236-247.
  • [129]Lacbawan F, Solomon BD, Roessler E, El-Jaick K, Domene S, Velez JI, Zhou N, Hadley D, Balog JZ, Long R, Fryer A, Smith W, Omar S, McLean SD, Clarkson K, Lichty A, Clegg NJ, Delgado MR, Levey E, Stashinko E, Potocki L, Vanallen MI, Clayton-Smith J, Donnai D, Bianchi DW, Juliusson PB, Njolstad PR, Brunner HG, Carey JG, Hehr U, et al.: Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. J Med Genet 2009, 46:389-398.
  • [130]Laflamme C, Filion C, Labelle Y: Functional characterization of SIX3 homeodomain mutations in holoprosencephaly: interaction with the nuclear receptor NR4A3/NOR1. Hum Mutat 2004, 24:502-508.
  • [131]Pasquier L, Dubourg C, Blayau M, Lazaro L, Le Marec B, David V, Odent S: A new mutation in the six-domain of SIX3 gene causes holoprosencephaly. Eur J Hum Genet 2000, 8:797-800.
  • [132]Pasquier L, Dubourg C, Gonzales M, Lazaro L, David V, Odent S, Encha-Razavi F: First occurrence of aprosencephaly/atelencephaly and holoprosencephaly in a family with a SIX3 gene mutation and phenotype/genotype correlation in our series of SIX3 mutations. J Med Genet 2005, 42:e4.
  • [133]Rauchman M, Hoffman WH, Hanna JD, Kulharya AS, Figueroa RE, Yang J, Tuck-Miller CM: Exclusion of SIX6 hemizygosity in a child with anophthalmia, panhypopituitarism and renal failure. Am J Med Genet 2001, 104:31-36.
  • [134]Ribeiro LA, El-Jaick KB, Muenke M, Richieri-Costa A: SIX3 mutations with holoprosencephaly. Am J Med Genet A 2006, 140:2577-2583.
  • [135]Solomon BD, Lacbawan F, Jain M, Domene S, Roessler E, Moore C, Dobyns WB, Muenke M: A novel SIX3 mutation segregates with holoprosencephaly in a large family. Am J Med Genet A 2009, 149A:919-925.
  • [136]Manseau L, Baradaran A, Brower D, Budhu A, Elefant F, Phan H, Philp AV, Yang M, Glover D, Kaiser K, Palter K, Selleck S: GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn 1997, 209:310-322.
  • [137]McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL: Spatiotemporal rescue of memory dysfunction in Drosophila. Science 2003, 302:1765-1768.
  • [138]Luo L, Liao YJ, Jan LY, Jan YN: Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 1994, 8:1787-1802.
  • [139]Gonzalez-Reyes A, St Johnston D: The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development 1998, 125:3635-3644.
  • [140]Gerlitz O, Basler K: Wingful, an extracellular feedback inhibitor of Wingless. Genes Dev 2002, 16:1055-1059.
  • [141]Staehling-Hampton K, Jackson PD, Clark MJ, Brand AH, Hoffmann FM: Specificity of bone morphogenetic protein-related factors: cell fate and gene expression changes in Drosophila embryos induced by decapentaplegic but not 60A. Cell Growth Differ 1994, 5:585-593.
  • [142]Kenyon KL, Li DJ, Clouser C, Tran S, Pignoni F: Fly SIX-type homeodomain proteins Sine oculis and Optix partner with different cofactors during eye development. Dev Dyn 2005, 234:497-504.
  • [143]Rawlins EL, Lovegrove B, Jarman AP: Echinoid facilitates Notch pathway signalling during Drosophila neurogenesis through functional interaction with Delta. Development 2003, 130:6475-6484.
  • [144]Zhou W, Hong Y: Drosophila Patj plays a supporting role in apical-basal polarity but is essential for viability. Development 2012, 139:2891-2896.
  • [145]Albertson R, Doe CQ: Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat Cell Biol 2003, 5:166-170.
  • [146]Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A: Fiji: an open-source platform for biological-image analysis. Nat Methods 2012, 9:676-682.
  文献评价指标  
  下载次数:64次 浏览次数:6次