期刊论文详细信息
Retrovirology
Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation
Laura Fantuzzi4  Mauro Andreotti2  Sandra Gessani4  Stefano Vella2  Andrea Cara2  Zuleika Michelini2  Roberta Bona2  Matteo Pellegrini3  Arturo Ottavio Rinaldi3  Jing Lu3  Maurizio Federico1  Alessandra Mallano2  Cristina Purificato4  Daniela Angela Covino4  Michela Sabbatucci4 
[1] National AIDS Center, Istituto Superiore di Sanità, Rome, Italy;Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy;Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles 90095, CA, USA;Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
关键词: APOBEC3A;    SAMHD1;    Restriction;    HIV-1;    CCL2;    Monocyte-derived macrophage;   
Others  :  1131991
DOI  :  10.1186/s12977-014-0132-6
 received in 2014-06-26, accepted in 2014-12-19,  发布年份 2015
PDF
【 摘 要 】

Background

Macrophages are key targets of HIV-1 infection. We have previously described that the expression of CC chemokine ligand 2 (CCL2) increases during monocyte differentiation to macrophages and it is further up-modulated by HIV-1 exposure. Moreover, CCL2 acts as an autocrine factor that promotes viral replication in infected macrophages. In this study, we dissected the molecular mechanisms by which CCL2 neutralization inhibits HIV-1 replication in monocyte-derived macrophages (MDM), and the potential involvement of the innate restriction factors protein sterile alpha motif (SAM) histidine/aspartic acid (HD) domain containing 1 (SAMHD1) and apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family members.

Results

CCL2 neutralization potently reduced the number of p24 Gag+ cells during the course of either productive or single cycle infection with HIV-1. In contrast, CCL2 blocking did not modify entry of HIV-1 based Virus Like Particles, thus demonstrating that the restriction involves post-entry steps of the viral life cycle. Notably, the accumulation of viral DNA, both total, integrated and 2-LTR circles, was strongly impaired by neutralization of CCL2. Looking for correlates of HIV-1 DNA accumulation inhibition, we found that the antiviral effect of CCL2 neutralization was independent of the modulation of SAMHD1 expression or function. Conversely, a strong and selective induction of APOBEC3A expression, to levels comparable to those of freshly isolated monocytes, was associated with the inhibition of HIV-1 replication mediated by CCL2 blocking. Interestingly, the CCL2 neutralization mediated increase of APOBEC3A expression was type I IFN independent. Moreover, the transcriptome analysis of the effect of CCL2 blocking on global gene expression revealed that the neutralization of this chemokine resulted in the upmodulation of additional genes involved in the defence response to viruses.

Conclusions

Neutralization of endogenous CCL2 determines a profound restriction of HIV-1 replication in primary MDM affecting post-entry steps of the viral life cycle with a mechanism independent of SAMHD1. In addition, CCL2 blocking is associated with induction of APOBEC3A expression, thus unravelling a novel mechanism which might contribute to regulate the expression of innate intracellular viral antagonists in vivo. Thus, our study may potentially lead to the development of new therapeutic strategies for enhancing innate cellular defences against HIV-1 and protecting macrophages from infection.

【 授权许可】

   
2015 Sabbatucci et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150303140628891.pdf 1598KB PDF download
Figure 8. 31KB Image download
Figure 7. 44KB Image download
Figure 6. 60KB Image download
Figure 5. 50KB Image download
Figure 4. 49KB Image download
Figure 3. 30KB Image download
Figure 2. 60KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M: The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 1986, 233(4760):215-219.
  • [2]Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB: Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 1986, 83(18):7089-7093.
  • [3]Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, et al.: Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 1986, 233(4768):1089-1093.
  • [4]Salahuddin SZ, Rose RM, Groopman JE, Markham PD, Gallo RC: Human T lymphotropic virus type III infection of human alveolar macrophages. Blood 1986, 68(1):281-284.
  • [5]Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD: Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 1996, 39(6):705-711.
  • [6]Wang TH, Donaldson YK, Brettle RP, Bell JE, Simmonds P: Identification of shared populations of human immunodeficiency virus type 1 infecting microglia and tissue macrophages outside the central nervous system. J Virol 2001, 75(23):11686-11699.
  • [7]Orenstein JM, Fox C, Wahl SM: Macrophages as a source of HIV during opportunistic infections. Science 1997, 276(5320):1857-1861.
  • [8]Lewin-Smith M, Wahl SM, Orenstein JM: Human immunodeficiency virus-rich multinucleated giant cells in the colon: a case report with transmission electron microscopy, immunohistochemistry, and in situ hybridization. Mod Pathol 1999, 12(1):75-81.
  • [9]Zalar A, Figueroa MI, Ruibal-Ares B, Bare P, Cahn P, de Bracco MM, et al.: Macrophage HIV-1 infection in duodenal tissue of patients on long term HAART. Antivir Res 2010, 87(2):269-271.
  • [10]Jambo KC, Banda DH, Kankwatira AM, Sukumar N, Allain TJ, Heyderman RS, et al.: Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol 2014, 7(5):1116-1126.
  • [11]Campbell JH, Hearps AC, Martin GE, Williams KC, Crowe SM: The importance of monocytes and macrophages in HIV pathogenesis, treatment, and cure. AIDS 2014, 28(15):2175-2187.
  • [12]Stevenson M. Role of myeloid cells in HIV-1-host interplay. J Neurovirol. 2014. doi:10.1007/s13365-014-0281-3.
  • [13]Waki K, Freed EO: Macrophages and Cell-Cell Spread of HIV-1. Viruses 2010, 2(8):1603-1620.
  • [14]Tan J, Sattentau QJ: The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol 2013, 21(8):405-412.
  • [15]Crowe S, Zhu T, Muller WA: The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol 2003, 74(5):635-641.
  • [16]Lusso P: HIV and the chemokine system: 10 years later. EMBO J 2006, 25(3):447-456.
  • [17]Fantuzzi L, Belardelli F, Gessani S: Monocyte/macrophage-derived CC chemokines and their modulation by HIV-1 and cytokines: a complex network of interactions influencing viral replication and AIDS pathogenesis. J Leukoc Biol 2003, 74(5):719-725.
  • [18]Ansari AW, Heiken H, Meyer-Olson D, Schmidt RE: CCL2: a potential prognostic marker and target of anti-inflammatory strategy in HIV/AIDS pathogenesis. Eur J Immunol 2011, 41(12):3412-3418.
  • [19]Deshmane SL, Kremlev S, Amini S, Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009, 29(6):313-326.
  • [20]Mengozzi M, De Filippi C, Transidico P, Biswas P, Cota M, Ghezzi S, et al.: Human immunodeficiency virus replication induces monocyte chemotactic protein-1 in human macrophages and U937 promonocytic cells. Blood 1999, 93(6):1851-1857.
  • [21]Fantuzzi L, Spadaro F, Vallanti G, Canini I, Ramoni C, Vicenzi E, et al.: Endogenous CCL2 (monocyte chemotactic protein-1) modulates human immunodeficiency virus type-1 replication and affects cytoskeleton organization in human monocyte-derived macrophages. Blood 2003, 102(7):2334-2337.
  • [22]Fantuzzi L, Canini I, Belardelli F, Gessani S: HIV-1 gp120 stimulates the production of beta-chemokines in human peripheral blood monocytes through a CD4-independent mechanism. J Immunol 2001, 166(9):5381-5387.
  • [23]Lehmann MH, Masanetz S, Kramer S, Erfle V: HIV-1 Nef upregulates CCL2/MCP-1 expression in astrocytes in a myristoylation- and calmodulin-dependent manner. J Cell Sci 2006, 119(Pt 21):4520-4530.
  • [24]Marini E, Tiberio L, Caracciolo S, Tosti G, Guzman CA, Schiaffonati L, et al.: HIV-1 matrix protein p17 binds to monocytes and selectively stimulates MCP-1 secretion: role of transcriptional factor AP-1. Cell Microbiol 2008, 10(3):655-666.
  • [25]Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, et al.: Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 1998, 95(6):3117-3121.
  • [26]Park IW, Wang JF, Groopman JE: HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. Blood 2001, 97(2):352-358.
  • [27]Harris RS, Hultquist JF, Evans DT: The restriction factors of human immunodeficiency virus. J Biol Chem 2012, 287(49):40875-40883.
  • [28]Malim MH, Bieniasz PD: HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harb Perspect Med 2012, 2(5):a006940.
  • [29]Blanco-Melo D, Venkatesh S, Bieniasz PD: Intrinsic cellular defenses against human immunodeficiency viruses. Immunity 2012, 37(3):399-411.
  • [30]Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, et al.: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011, 474(7353):658-661.
  • [31]Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, et al.: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474(7353):654-657.
  • [32]Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, et al.: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011, 480(7377):379-382.
  • [33]Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al.: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012, 13(3):223-228.
  • [34]Powell RD, Holland PJ, Hollis T, Perrino FW: Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 2011, 286(51):43596-43600.
  • [35]Yang Z, Greene WC: A new activity for SAMHD1 in HIV restriction. Nat Med 2014, 20(8):808-809.
  • [36]Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, Malim MH: Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 2004, 14(15):1392-1396.
  • [37]Chiu YL, Greene WC: APOBEC3 cytidine deaminases: distinct antiviral actions along the retroviral life cycle. J Biol Chem 2006, 281(13):8309-8312.
  • [38]Hultquist JF, Lengyel JA, Refsland EW, LaRue RS, Lackey L, Brown WL, et al.: Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 2011, 85(21):11220-11234.
  • [39]Vieira VC, Soares MA: The role of cytidine deaminases on innate immune responses against human viral infections. Biomed Res Int 2013, 2013:683095.
  • [40]Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM, Malim MH: Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 2009, 83(18):9474-9485.
  • [41]Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS: Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res 2010, 38(13):4274-4284.
  • [42]Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG, et al.: Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 2007, 110(1):393-400.
  • [43]Douville RN, Hiscott J: The interface between the innate interferon response and expression of host retroviral restriction factors. Cytokine 2010, 52(1–2):108-115.
  • [44]Bischof D, Cornetta K: Flexibility in cell targeting by pseudotyping lentiviral vectors. Methods Mol Biol 2010, 614:53-68.
  • [45]Muratori C, D’Aloja P, Superti F, Tinari A, Sol-Foulon N, Sparacio S, et al.: Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way. BMC Biotechnol 2006, 6:52.
  • [46]Muratori C, Bona R, Federico M: Lentivirus-based virus-like particles as a new protein delivery tool. Methods Mol Biol 2010, 614:111-124.
  • [47]Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M: LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U S A 2013, 110(18):7306-7311.
  • [48]Federico M: HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step. Virology 2011, 417(1):37-49.
  • [49]Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS: HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 1990, 61(2):213-222.
  • [50]Imahashi M, Nakashima M, Iwatani Y: Antiviral Mechanism and Biochemical Basis of the Human APOBEC3 Family. Front Microbiol 2012, 3:250.
  • [51]Goila-Gaur R, Strebel K: HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 2008, 5:51-4690-5-51.
  • [52]Thielen BK, McNevin JP, McElrath MJ, Hunt BV, Klein KC, Lingappa JR: Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms. J Biol Chem 2010, 285(36):27753-27766.
  • [53]Koning FA, Goujon C, Bauby H, Malim MH: Target cell-mediated editing of HIV-1 cDNA by APOBEC3 proteins in human macrophages. J Virol 2011, 85(24):13448-13452.
  • [54]Trapp S, Derby NR, Singer R, Shaw A, Williams VG, Turville SG, et al.: Double-stranded RNA analog poly(I:C) inhibits human immunodeficiency virus amplification in dendritic cells via type I interferon-mediated activation of APOBEC3G. J Virol 2009, 83(2):884-895.
  • [55]Berger A, Munk C, Schweizer M, Cichutek K, Schule S, Flory E: Interaction of Vpx and apolipoprotein B mRNA-editing catalytic polypeptide 3 family member A (APOBEC3A) correlates with efficient lentivirus infection of monocytes. J Biol Chem 2010, 285(16):12248-12254.
  • [56]Berger G, Durand S, Fargier G, Nguyen XN, Cordeil S, Bouaziz S, et al.: APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 2011, 7(9):e1002221.
  • [57]Dragin L, Nguyen LA, Lahouassa H, Sourisce A, Kim B, Ramirez BC, et al.: Interferon block to HIV-1 transduction in macrophages despite SAMHD1 degradation and high deoxynucleoside triphosphates supply. Retrovirology 2013, 10:30-4690-10-30.
  • [58]Love M, Huber H, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. bioRxiv. 2014. doi:10.1101/002832.
  • [59]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [60]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [61]Haller O: Dynamins are forever: MxB inhibits HIV-1. Cell Host Microbe 2013, 14(4):371-373.
  • [62]Campbell GR, Spector SA: CCL2 increases X4-tropic HIV-1 entry into resting CD4+ T cells. J Biol Chem 2008, 283(45):30745-30753.
  • [63]Weiss L, Si-Mohamed A, Giral P, Castiel P, Ledur A, Blondin C, et al.: Plasma levels of monocyte chemoattractant protein-1 but not those of macrophage inhibitory protein-1alpha and RANTES correlate with virus load in human immunodeficiency virus infection. J Infect Dis 1997, 176(6):1621-1624.
  • [64]Bernasconi S, Cinque P, Peri G, Sozzani S, Crociati A, Torri W, et al.: Selective elevation of monocyte chemotactic protein-1 in the cerebrospinal fluid of AIDS patients with cytomegalovirus encephalitis. J Infect Dis 1996, 174(5):1098-1101.
  • [65]Chang L, Ernst T, St Hillaire C, Conant K: Antiretroviral treatment alters relationship between MCP-1 and neurometabolites in HIV patients. Antivir Ther 2004, 9(3):431-440.
  • [66]Cinque P, Vago L, Mengozzi M, Torri V, Ceresa D, Vicenzi E, et al.: Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. AIDS 1998, 12(11):1327-1332.
  • [67]Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, et al.: HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 2002, 99(21):13795-13800.
  • [68]Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, et al.: Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 2009, 83(8):3719-3733.
  • [69]Fantuzzi L, Borghi P, Ciolli V, Pavlakis G, Belardelli F, Gessani S: Loss of CCR2 expression and functional response to monocyte chemotactic protein (MCP-1) during the differentiation of human monocytes: role of secreted MCP-1 in the regulation of the chemotactic response. Blood 1999, 94(3):875-883.
  • [70]Guha D, Ayyavoo V: Innate immune evasion strategies by human immunodeficiency virus type 1. ISRN AIDS 2013, 2013:954806.
  • [71]Zaritsky LA, Gama L, Clements JE: Canonical type I IFN signaling in simian immunodeficiency virus-infected macrophages is disrupted by astrocyte-secreted CCL2. J Immunol 2012, 188(8):3876-3885.
  • [72]Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW: CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 2006, 26(4):1098-1106.
  • [73]Allers K, Fehr M, Conrad K, Epple HJ, Schurmann D, Geelhaar-Karsch A, et al.: Macrophages accumulate in the gut mucosa of untreated HIV-infected patients. J Infect Dis 2014, 209(5):739-748.
  • [74]Pido-Lopez J, Whittall T, Wang Y, Bergmeier LA, Babaahmady K, Singh M, et al.: Stimulation of cell surface CCR5 and CD40 molecules by their ligands or by HSP70 up-regulates APOBEC3G expression in CD4(+) T cells and dendritic cells. J Immunol 2007, 178(3):1671-1679.
  • [75]Lafferty MK, Sun L, DeMasi L, Lu W, Garzino-Demo A: CCR6 ligands inhibit HIV by inducing APOBEC3G. Blood 2010, 115(8):1564-1571.
  • [76]Ooms M, Krikoni A, Kress AK, Simon V, Munk C: APOBEC3A, APOBEC3B, and APOBEC3H haplotype 2 restrict human T-lymphotropic virus type 1. J Virol 2012, 86(11):6097-6108.
  • [77]Chen H, Lilley CE, Yu Q, Lee DV, Chou J, Narvaiza I, et al.: APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 2006, 16(5):480-485.
  • [78]Diget EA, Zuwala K, Berg RK, Laursen RR, Soby S, Ostergaard L, et al.: Characterization of HIV-1 infection and innate sensing in different types of primary human monocyte-derived macrophages. Mediat Inflamm 2013, 2013:208412.
  • [79]Greenwell-Wild T, Vazquez N, Jin W, Rangel Z, Munson PJ, Wahl SM: Interleukin-27 inhibition of HIV-1 involves an intermediate induction of type I interferon. Blood 2009, 114(9):1864-1874.
  • [80]Mohanram V, Skold AE, Bachle SM, Pathak SK, Spetz AL: IFN-alpha induces APOBEC3G, F, and A in immature dendritic cells and limits HIV-1 spread to CD4+ T cells. J Immunol 2013, 190(7):3346-3353.
  • [81]Cassetta L, Kajaste-Rudnitski A, Coradin T, Saba E, Chiara GD, Barbagallo M, Graziano F, Alfano M, Cassol E, Vicenzi E, Poli G: M1 polarization of human monocyte-derived macrophages restricts pre-and post-integration steps of HIV-1 replication. AIDS 2013, 27(12):1847-1856.
  • [82]Taya K, Nakayama EE, Shioda T: Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages. PLoS One 2014, 9(3):e90969.
  • [83]Goujon C, Schaller T, Galao RP, Amie SM, Kim B, Olivieri K, et al.: Evidence for IFNalpha-induced, SAMHD1-independent inhibitors of early HIV-1 infection. Retrovirology 2013, 10:23-4690-10-23.
  • [84]Landry S, Narvaiza I, Linfesty DC, Weitzman MD: APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep 2011, 12(5):444-450.
  • [85]Rollenhagen C, Asin SN: Enhanced HIV-1 replication in ex vivo ectocervical tissues from post-menopausal women correlates with increased inflammatory responses. Mucosal Immunol 2011, 4(6):671-681.
  • [86]Federico M, Percario Z, Olivetta E, Fiorucci G, Muratori C, Micheli A, et al.: HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors. Blood 2001, 98(9):2752-2761.
  • [87]Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J: High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 1998, 72(11):8873-8883.
  • [88]Negri DR, Michelini Z, Baroncelli S, Spada M, Vendetti S, Buffa V, et al.: Successful immunization with a single injection of non-integrating lentiviral vector. Mol Ther 2007, 15(9):1716-1723.
  • [89]Negri DR, Bona R, Michelini Z, Leone P, Macchia I, Klotman ME, et al.: Transduction of human antigen-presenting cells with integrase-defective lentiviral vector enables functional expansion of primed antigen-specific CD8(+) T cells. Hum Gene Ther 2010, 21(8):1029-1035.
  • [90]Durand S, Nguyen XN, Turpin J, Cordeil S, Nazaret N, Croze S, et al.: Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes. J Virol 2013, 87(1):234-242.
  • [91]Weiss S, Konig B, Muller HJ, Seidel H, Goody RS: Synthetic human tRNA(UUULys3) and natural bovine tRNA(UUULys3) interact with HIV-1 reverse transcriptase and serve as specific primers for retroviral cDNA synthesis. Gene 1992, 111(2):183-197.
  • [92]Sparacio S, Pfeiffer T, Schaal H, Bosch V: Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors. Mol Ther 2001, 3(4):602-612.
  • [93]Cassol E, Cassetta L, Rizzi C, Alfano M, Poli G: M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. J Immunol 2009, 182(10):6237-6246.
  • [94]Liszewski MK, Yu JJ, O’Doherty U: Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. Methods 2009, 47(4):254-260.
  • [95]Reigadas S, Andreola ML, Wittkop L, Cosnefroy O, Anies G, Recordon-Pinson P, et al.: Evolution of 2-long terminal repeat (2-LTR) episomal HIV-1 DNA in raltegravir-treated patients and in in vitro infected cells. J Antimicrob Chemother 2010, 65(3):434-437.
  • [96]Fantuzzi L, Spadaro F, Purificato C, Cecchetti S, Podo F, Belardelli F, et al.: Phosphatidylcholine-specific phospholipase C activation is required for CCR5-dependent, NF-kB-driven CCL2 secretion elicited in response to HIV-1 gp120 in human primary macrophages. Blood 2008, 111(7):3355-3363.
  • [97]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  • [98]Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014. doi:10.1093/bioinformatics/btu638
  • [99]Cribier A, Descours B, Valadao AL, Laguette N, Benkirane M: Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep 2013, 3(4):1036-1043.
  文献评价指标  
  下载次数:22次 浏览次数:13次