期刊论文详细信息
Vascular Cell
Growth factor purification and delivery systems (PADS) for therapeutic angiogenesis
Gene L Bidwell3  Eddie Perkins2  Fakhri Mahdi3  Grant G Robinson3  Huiling Liu3  Eric M George1 
[1] Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson 39216, MS, USA;Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson 39216, MS, USA;Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson 39216, MS, USA
关键词: Purification and delivery system;    Therapeutic angiogenesis;    Drug delivery;    Elastin-like polypeptide;    Vascular endothelial growth factor;   
Others  :  1130997
DOI  :  10.1186/s13221-014-0026-3
 received in 2014-08-25, accepted in 2014-12-16,  发布年份 2015
PDF
【 摘 要 】

Background

Therapeutic angiogenesis with vascular endothelial growth factor (VEGF), delivered either via recombinant protein infusion or via gene therapy, has shown promise in preclinical models of various diseases including myocardial infarction, renovascular disease, preeclampsia, and neurodegenerative disorders. However, dosing, duration of expression, and tissue specificity are challenges to VEGF gene therapy, and recombinant VEGF delivery suffers from extremely rapid plasma clearance, necessitating continuous infusion and/or direct injection at the site of interest.

Methods

Here we describe a novel growth factor purification and delivery system (PADS) generated by fusion of VEGF121 to a protein polymer based on Elastin-like Polypeptide (ELP). ELP is a thermally responsive biopolymer derived from a five amino acid repeat sequence found in human tropoelastin. VEGFPADS were constructed by fusion of the ELP coding sequence in-frame with the VEGF121 coding sequence connected by a flexible di-glycine linker. In vitro activity of VEGFPADS was determined using cell proliferation, tube formation, and migration assays with vascular endothelial cells. Pharmacokinetics and biodistribution of VEGFPADS in vivo were compared to free VEGF in mice using quantitative fluorescence techniques.

Results

ELP fusion allowed for recombinant expression and simple, non-chromatographic purification of the ELP-VEGF121 chimera in yields as high as 90 mg/L of culture and at very high purity. ELP fusion had no effect on the VEGF activity, as the VEGFPADS were equally potent as free VEGF121 in stimulating HUVEC proliferation, tube formation, and migration. Additionally, the VEGFPADS had a molecular weight five-fold larger than free VEGF121, which lead to slower plasma clearance and an altered biodistribution after systemic delivery in vivo.

Conclusion

PADS represent a new method of both purification and in vivo stabilization of recombinant growth factors. The use of this system could permit recombinant growth factors to become viable options for therapeutic angiogenesis in a number of disease models.

【 授权许可】

   
2015 George et al.; licensee Biomed Central.

【 预 览 】
附件列表
Files Size Format View
20150228170602568.pdf 1548KB PDF download
Figure 4. 43KB Image download
Figure 3. 104KB Image download
Figure 2. 23KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Reuvekamp A, Velsing-Aarts FV, Poulina IE, Capello JJ, Duits AJ: Selective deficit of angiogenic growth factors characterises pregnancies complicated by pre-eclampsia. Br J Obstet Gynaecol 1999, 106:1019-22.
  • [2]Chade AR, Zhu X, Mushin OP, Napoli C, Lerman A, Lerman LO: Simvastatin promotes angiogenesis and prevents microvascular remodeling in chronic renal ischemia. FASEB J Off Publ Fed Am Soc Exp Biol 2006, 20:1706-8. doi:10.1096/fj.05-5680fje
  • [3]Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, et al.: Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001, 28:131-8. doi:10.1038/88842
  • [4]Cvetanovic M, Patel JM, Marti HH, Kini AR, Opal P: Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat Med 2011, 17:1445-7. doi:10.1038/nm.2494
  • [5]Gilbert JS, Verzwyvelt J, Colson D, Arany M, Karumanchi SA, Granger JP: Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placentalischemia-induced hypertension. Hypertension 2010, 55:380-5. doi:10.1161/HYPERTENSIONAHA.109.141937
  • [6]Chade AR, Kelsen S: Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach. Am J Physiol Ren Physiol 2012, 302:F1342-50. doi:10.1152/ajprenal.00674.2011
  • [7]Verheyen A, Peeraer E, Lambrechts D, Poesen K, Carmeliet P, Shibuya M, et al.: Therapeutic potential of VEGF and VEGF-derived peptide in peripheral neuropathies. Neuroscience 2013, 244:77-89. doi:10.1016/j.neuroscience.2013.03.050
  • [8]Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR, et al.: Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1995, 1:1085-9.
  • [9]Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, et al.: Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994, 93:662-70. doi:10.1172/JCI117018
  • [10]Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, et al.: Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994, 89:2183-9.
  • [11]Maynard SE, Min J-Y, Merchan J, Lim K-H, Li J, Mondal S, et al.: Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003, 111:649-58. doi:10.1172/JCI17189
  • [12]Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, et al.: Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol 2002, 160:1405-23. doi:10.1016/S0002-9440(10)62567-9
  • [13]Koga K, Osuga Y, Yoshino O, Hirota Y, Ruimeng X, Hirata T, et al.: Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab 2003, 88:2348-51. doi:10.1210/jc.2002-021942
  • [14]Tsatsaris V, Goffin F, Munaut C, Brichant J-F, Pignon M-R, Noel A, et al.: Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological consequences. J Clin Endocrinol Metab 2003, 88:5555-63. doi:10.1210/jc.2003-030528
  • [15]Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi JH, et al.: A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 2002, 72:20-32. doi:10.1067/mcp.2002.126179
  • [16]Daugherty AL, Rangell LK, Eckert R, Zavala-Solorio J, Peale F, Mrsny RJ. Sustained release formulations of rhVEGF165 produce a durable response in a murine model of peripheral angiogenesis. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Für Pharm Verfahrenstechnik EV. 2011;78:289–97. doi:10.1016/j.ejpb.2011.03.011.
  • [17]Shin S-H, Lee J, Lim KS, Rhim T, Lee SK, Kim Y-H, et al.: Sequential delivery of TAT-HSP27 and VEGF using microsphere/hydrogel hybrid systems for therapeutic angiogenesis. J Control Release Off J Control Release Soc 2013, 166:38-45. doi:10.1016/j.jconrel.2012.12.020
  • [18]Sacchi V, Mittermayr R, Hartinger J, Martino MM, Lorentz KM, Wolbank S, et al.: Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci U S A 2014, 111:6952-7. doi:10.1073/pnas.1404605111
  • [19]Yang P, Wang K, Shi Z, Dang X, Yu P, Wang C, et al.: Prokaryotic expression, purification and activity assay of recombinant vascular endothelial growth factor. Nan Fang Yi Ke Da Xue Xue Bao 2006, 26:1263-8.
  • [20]Mohanraj D, Olson T, Ramakrishnan S: A novel method to purify recombinant vascular endothelial growth factor (VEGF121) expressed in yeast. Biochem Biophys Res Commun 1995, 215:750-6. doi:10.1006/bbrc.1995.2527
  • [21]Urry DW, Long MM, Cox BA, Ohnishi T, Mitchell LW, Jacobs M: The synthetic polypentapeptide of elastin coacervates and forms filamentous aggregates. Biochim Biophys Acta 1974, 371:597-602.
  • [22]Urry DW, Luan C-H, Parker TM, Gowda DC, Prasad KU, Reid MC, et al.: Temperature of Polypeptide Inverse Temperature Transition Depends on Mean Residue Hydrophobicity. J Am Chem Soc 1991, 113:4346-8.
  • [23]Meyer DE, Chilkoti A: Purification of Recombinant Proteins by Fusion with Thermally Responsive Polypeptides. Nat Biotechnol 1999, 17:1112-5.
  • [24]Bidwell GL, Raucher D: Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy. Mol Cancer Ther 2005, 4:1076-85. doi:10.1158/1535-7163.MCT-04-0253
  • [25]Bidwell GL, Perkins E, Raucher D: A thermally targeted c-Myc inhibitory polypeptide inhibits breast tumor growth. Cancer Lett 2012, 319:136-43. doi:10.1016/j.canlet.2011.12.042
  • [26]Bidwell GL, Perkins E, Hughes J, Khan M, James JR, Raucher D: Thermally targeted delivery of a c-Myc inhibitory polypeptide inhibits tumor progression and extends survival in a rat glioma model. PLoS One 2013, 8:e55104. doi:10.1371/journal.pone.0055104
  • [27]Bidwell GL, Whittom AA, Thomas E, Lyons D, Hebert MD, Raucher D: A thermally targeted peptide inhibitor of symmetrical dimethylation inhibits cancer-cell proliferation. Peptides 2010, 31:834-41. doi:10.1016/j.peptides.2010.02.007
  • [28]Massodi I, Moktan S, Rawat A, Bidwell GL, Raucher D: Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier. Int J Cancer 2010, 126:533-44. doi:10.1002/ijc.24725
  • [29]Massodi I, Thomas E, Raucher D: Application of thermally responsive elastin-like polypeptide fused to a lactoferrin-derived peptide for treatment of pancreatic cancer. Molecules 2009, 14:1999-2015.
  • [30]Liu W, Dreher MR, Furgeson DY, Peixoto KV, Yuan H, Zalutsky MR, et al.: Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J Control Release 2006, 116:170-8.
  • [31]Rincon AC, Molina-Martinez IT, de Las HB, Alonso M, Bailez C, Rodriguez-Cabello JC, et al.: Biocompatibility of elastin-like polymer poly(VPAVG) microparticles: in vitro and in vivo studies. J Biomed Mater Res A 2006, 78:343-51.
  • [32]Shamji MF, Betre H, Kraus VB, Chen J, Chilkoti A, Pichika R, et al.: Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local antiinflammatory therapeutic. Arthritis Rheum 2007, 56:3650-61. doi:10.1002/art.22952
  • [33]Daniell H, Guda C, McPherson DT, Zhang X, Xu J, Urry DW: Hyperexpression of a synthetic protein-based polymer gene. Methods Mol Biol 1997, 63:359-71.
  • [34]George EM, Liu H, Robinson GG, Bidwell GL (2014) A polypeptide drug carrier for maternal delivery and prevention of fetal exposure. J Drug Target 1–13. doi: 10.3109/1061186X.2014.950666
  • [35]Liu W, Dreher MR, Chow DC, Zalutsky MR, Chilkoti A: Tracking the in vivo fate of recombinant polypeptides by isotopic labeling. J Control Release 2006, 114:184-92.
  文献评价指标  
  下载次数:2次 浏览次数:7次