Plant Methods | |
Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants | |
Arthur R Grossman2  Emilio Fernandez1  Aurora Galván1  Matthew Prior2  Jose J Higuera1  Amaury de Montaigu4  Leonardo Magneschi5  Claudia Catalanotti2  Wenqiang Yang2  Florence Mus3  Wirulda Pootakham6  David Gonzalez-Ballester1  | |
[1] Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba 14071, Spain;Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA;Montana State University, Department of Chemical and Biological Engineering, and Department of Microbiology, Bozeman, MT 59171, USA;Max Planck Insitute for Plant Breeding Research, Department of Plant Developmental Biology, D-50829, Köln, Germany;PlantLab, Scuola Superiore Sant'Anna, 56127 Pisa, Italy;National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand | |
关键词: PCR-based screening; paromomycin resistance; mutant screening; mutant library; transformation; insertional mutants; reverse genetics; | |
Others : 822985 DOI : 10.1186/1746-4811-7-24 |
|
received in 2011-04-11, accepted in 2011-07-27, 发布年份 2011 | |
【 摘 要 】
A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker) and in the strategies used to maintain and store transformants.
【 授权许可】
2011 Gonzalez-Ballester et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140712132218957.pdf | 635KB | download | |
Figure 3. | 49KB | Image | download |
Figure 2. | 101KB | Image | download |
Figure 1. | 16KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK: Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 2005, 137:545-556.
- [2]Gonzalez-Ballester D, de Montaigu A, Higuera JJ, Galvan A, Fernandez E: Functional genomics of the regulation of the nitrate assimilation pathway in Chlamydomonas. Plant Physiol 2005, 137:522-533.
- [3]Pollock SV, Pootakham W, Shibagaki N, Moseley JL, Grossman AR: Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation. Photosynth Res 2005, 86:475-489.
- [4]Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, et al.: The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007, 318:245-250.
- [5]Wendland J: PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet 2003, 44:115-123.
- [6]Wu S, Ying G, Wu Q, Capecchi MR: Toward simpler and faster genome-wide mutagenesis in mice. Nat Genet 2007, 39:922-930.
- [7]Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al.: Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301:653-657.
- [8]Piffanelli P, Droc G, Mieulet D, Lanau N, Bes M, Bourgeois E, Rouviere C, Gavory F, Cruaud C, Ghesquiere A, Guiderdoni E: Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol Biol 2007, 65:587-601.
- [9]Crutchfield AM, Diller KR, Brand JJ: Cryopreservation of Chlamydomonas reinhardtii. European Journal of Phycology 1999, 34:43-52.
- [10]Osakabe K, Osakabe Y, Toki S: Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 2010, 107:12034-12039.
- [11]de Pater S, Neuteboom LW, Pinas JE, Hooykaas PJ, van der Zaal BJ: ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 2009, 7:821-835.
- [12]Tovkach A, Zeevi V, Tzfira T: A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J 2009, 57:747-757.
- [13]Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, et al.: High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 2010, 107:12028-12033.
- [14]Reyon D, Kirkpatrick JR, Sander JD, Zhang F, Voytas DF, Joung JK, Dobbs D, Coffman CR: ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics 2011, 12:83. BioMed Central Full Text
- [15]Gilchrist E, Haughn G: Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 2010, 9:103-110.
- [16]Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D: Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 2009, 58:165-174.
- [17]Zhao T, Wang W, Bai X, Qi Y: Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 2008, 58:157-164.
- [18]Schroda M: RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 2006, 49:69-84.
- [19]Stepanova AN, Alonso JM: PCR-based screening for insertional mutants. Methods Mol Biol 2006, 323:163-172.
- [20]Krysan PJ, Young JC, Sussman MR: T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 1999, 11:2283-2290.
- [21]An G, Jeong DH, Jung KH, Lee S: Reverse genetic approaches for functional genomics of rice. Plant Mol Biol 2005, 59:111-123.
- [22]Rios G, Lossow A, Hertel B, Breuer F, Schaefer S, Broich M, Kleinow T, Jasik J, Winter J, Ferrando A, et al.: Rapid identification of Arabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J 2002, 32:243-253.
- [23]Pazour GJ, Witman GB: Forward and reverse genetic analysis of microtubule motors in Chlamydomonas. Methods 2000, 22:285-298.
- [24]Sizova I, Fuhrmann M, Hegemann P: A Streptomyces rimosus AphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 2001, 277:221-229.
- [25]Leon-Bañares R, Gonzalez-Ballester D, Galvan A, Fernandez E: Transgenic microalgae as green cell-factories. Trends Biotechnol 2004, 22:45-52.
- [26]Fischer N, Rochaix JD: The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 2001, 265:888-894.
- [27]Gonzalez-Ballester D, de Montaigu A, Galvan A, Fernandez E: Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. Anal Biochem 2005, 340:330-335.
- [28]Liu Y-G, Mitsukawa N, Oosumi T, Whittier R: Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant Journal 1995, 8:457-463.
- [29]Schnell RA, Lefebvre PA: Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging. Genetics 1993, 134:737-747.
- [30]Harris EH: The Chlamydomonas Sourcebook. A Comprehensive Guide to Biology and Laboratory Use. San Diego: Academic Press; 1989.
- [31]Pollock SV, Prout DL, Godfrey AC, Lemaire SD, Moroney JV: The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Plant Mol Biol 2004, 56:125-132.
- [32]Shimogawara K, Fujiwara S, Grossman AR, Usuda H: High efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 1998, 148:1821-1828.
- [33]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. Second edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1989.
- [34]Quesada A, Galván A, Schnell R, Lefebvre PA, Fernández E: Five nitrate assimilation-related loci are clustered in Chlamydomonas reinhardtii. Molecular and General Genetics 1993, 240:387-394.
- [35]Pootakham W, Gonzalez-Ballester D, Grossman AR: Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. Plant Physiol 2010, 153:1653-1668.
- [36]Gonzalez-Ballester D, Pollock SV, Pootakham W, Grossman AR: The central role of a SNRK2 kinase in sulfur deprivation responses. Plant Physiol 2008, 147:216-227.
- [37]de Montaigu A: Regulación negativa de la asimilaición de nitrato en Chlamydomonas reinhardtii. PhD dissertation Universidad de Cordoba Spain 2006.
- [38]de Montaigu A, Sanz-Luque E, Macias MI, Galvan A, Fernandez E: Transcriptional regulation of CDP1 and CYG56 is required for proper NH4+ sensing in Chlamydomonas. J Exp Bot 2010, 62:1425-1437.