期刊论文详细信息
Virology Journal
Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus
Darrell R Kapczynski1  Kangzhen Yu2  Haijun Jiang2 
[1]Exotic and Emerging Avian Disease Research Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605, Greece
[2]Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People‘s Republic of China
关键词: Transcription factor;    Cytokine;    Chicken;    Avian influenza virus;   
Others  :  820194
DOI  :  10.1186/1743-422X-10-342
 received in 2013-07-16, accepted in 2013-11-14,  发布年份 2013
PDF
【 摘 要 】

Background

Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection of poultry. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV).

Methods

To gain a better understanding of the early viral-host interactions of LPAIV in chickens, primary chicken embryo hepatocytes (CEH) were infected with four different LPAIVs of U.S. origin. Kinetics of virus replication, transcription factor (c-Jun, p50 and IRF-3) activation and immune response gene (IL-6, IL-1beta, IFN-alpha and Mx) expression were studied at four different time points (6, 12, 24 and 48 hours) post infection and compared to non-infected controls.

Results

CEH can support growth of the tested LPAIVs when with trypsin supplementation. All four immune response genes tested were upregulated following infection as were transcription factors c-Jun, p50 and IRF-3. Amplification of these genes was dependant on virus replication (e.g. inclusion of trypsin), such that immune response genes and transcription factors were upregulated as viral titers increased.

Conclusion

The results of these studies demonstrate the requirement of virus replication for innate immune regulation and broaden our understanding of transcription factor responses related to LPAIV infection in chickens.

【 授权许可】

   
2013 Jiang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712031337164.pdf 825KB PDF download
Figure 4. 80KB Image download
Figure 3. 54KB Image download
Figure 2. 59KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Kapczynski DR, Liljebjelke K, Kulkarni G, Hunt H, Jiang HJ, Petkov D: Cross reactive cellular immune responses in chickens previously exposed to low pathogenic avian influenza. BMC Proc 2011, 5(4):S13.
  • [2]Swayne DE, Kapczynski D: Strategies and challenges for eliciting immunity against avian influenza virus in birds. Immunol Rev 2008, 225:314-331.
  • [3]Kapczynski DR, Swayne DE: Influenza vaccines for avian species. Curr Top Microbiol Immunol 2009, 333:133-152.
  • [4]Veits J, Weber S, Stech O, Breithaupt A, Graber M, Gohrbandt S, Bogs J, Hundt J, Teifke JP, Mettenleiter TC, Stech J: Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proc Natl Acad Sci USA 2012, 109:2579-2584.
  • [5]Capua I, Alexander DJ: Avian influenza infections in birds–a moving target. Influenza Other Respi Viruses 2007, 1:11-18.
  • [6]Capua I, Alexander DJ: Avian influenza: recent developments. Avian Pathol 2004, 33:393-404.
  • [7]Fusaro A, Monne I, Salviato A, Valastro V, Schivo A, Amarin NM, Gonzalez C, Ismail MM, Al-Ankari AR, Al-Blowi MH, et al.: Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. J Virol 2011, 85:8413-8421.
  • [8]Homme PJ, Easterday BC: Avian influenza virus infections: I: Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis 1970, 14:66-74.
  • [9]Soda K, Asakura S, Okamatsu M, Sakoda Y, Kida H: H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens. Virol J 2011, 8:64. BioMed Central Full Text
  • [10]Qiao C, Liu Q, Bawa B, Shen H, Qi W, Chen Y, Mok CK, Garcia-Sastre A, Richt JA, Ma W: Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. J Gen Virol 2012, 93:2337-2345.
  • [11]Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH, Xu KM, Lim W, Webster RG, Yuen KY, Peiris JS, Guan Y: Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 2005, 43:5760-5767.
  • [12]Saito T, Lim W, Suzuki T, Suzuki Y, Kida H, Nishimura SI, Tashiro M: Characterization of a human H9N2 influenza virus isolated in Hong Kong. Vaccine 2001, 20:125-133.
  • [13]Maecker H, Varfolomeev E, Kischkel F, Lawrence D, LeBlanc H, Lee W, Hurst S, Danilenko D, Li J, Filvaroff E, et al.: TWEAK attenuates the transition from innate to adaptive immunity. Cell 2005, 123:931-944.
  • [14]Lowenthal JW, Lambrecht B, van den Berg TP, Andrew ME, Strom AD, Bean AG: Avian cytokines - the natural approach to therapeutics. Dev Comp Immunol 2000, 24:355-365.
  • [15]Jiang H, Yang H, Kapczynski DR: Chicken interferon alpha pretreatment reduces virus replication of pandemic H1N1 and H5N9 avian influenza viruses in lung cell cultures from different avian species. Virol J 2011, 8:447. BioMed Central Full Text
  • [16]Meylan E, Tschopp J, Karin M: Intracellular pattern recognition receptors in the host response. Nature 2006, 442:39-44.
  • [17]Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002, 20:197-216.
  • [18]Zhong B, Tien P, Shu HB: Innate immune responses: crosstalk of signaling and regulation of gene transcription. Virology 2006, 352:14-21.
  • [19]Bowie AG, Unterholzner L: Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 2008, 8:911-922.
  • [20]Bos TJ, Monteclaro FS, Mitsunobu F, Ball AR Jr, Chang CH, Nishimura T, Vogt PK: Efficient transformation of chicken embryo fibroblasts by c-Jun requires structural modification in coding and noncoding sequences. Genes Dev 1990, 4:1677-1687.
  • [21]Capobianco AJ, Chang D, Mosialos G, Gilmore TD: p105, the NF-kappa B p50 precursor protein, is one of the cellular proteins complexed with the v-Rel oncoprotein in transformed chicken spleen cells. J Virol 1992, 66:3758-3767.
  • [22]Grant CE, Vasa MZ, Deeley RG: cIRF-3, a new member of the interferon regulatory factor (IRF) family that is rapidly and transiently induced by dsRNA. Nucleic Acids Res 1995, 23:2137-2146.
  • [23]Saitoh T, Tun-Kyi A, Ryo A, Yamamoto M, Finn G, Fujita T, Akira S, Yamamoto N, Lu KP, Yamaoka S: Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 2006, 7:598-605.
  • [24]Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F: X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Biol 2003, 10:922-927.
  • [25]Kapczynski DR, Pantin-Jackwood M, Guzman SG, Ricardez Y, Spackman E, Bertran K, Suarez DL, Swayne DE: Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection. J Virol 2013, 87:9086-9096.
  • [26]Post J, de Geus ED, Vervelde L, Cornelissen JB, Rebel JM: Systemic distribution of different low pathogenic avian influenza (LPAI) viruses in chicken. Virol J 2013, 10:23. BioMed Central Full Text
  • [27]van Riel D, van den Brand JM, Munster VJ, Besteboer TM, Fouchier RA, Osterhaus AD, Kuiken T: Pathology and virus distribution in chickens naturally infected with highly pathogenic avian influenza A virus (H7N7) During the 2003 outbreak in The Netherlands. Vet Pathol 2009, 46:971-976.
  • [28]Lee J, Foster DN, Bottje WG, Jang HM, Chandra YG, Gentles LE, Kong BW: Establishment of an immortal chicken embryo liver-derived cell line. Poult Sci 2013, 92:1604-1612.
  • [29]Lukert PD: Immunofluorescence of avian infectious bronchitis virus in primary chicken embryo kidney, liver, lung, and fibroblast cell cultures. Arch Gesamte Virusforsch 1966, 19:265-272.
  • [30]Allan GM, McNulty MS: A direct immunofluorescence test for the rapid detection of avian influenza virus antigen in tissue impression smears. Avian Pathol 1985, 14:449-460.
  • [31]Julkunen I, Sareneva T, Pirhonen J, Ronni T, Melen K, Matikainen S: Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 2001, 12:171-180.
  • [32]Kaufmann A, Salentin R, Meyer RG, Bussfeld D, Pauligk C, Fesq H, Hofmann P, Nain M, Gemsa D, Sprenger H: Defense against influenza A virus infection: essential role of the chemokine system. Immunobiology 2001, 204:603-613.
  • [33]Ma W, Belisle SE, Mosier D, Li X, Stigger-Rosser E, Liu Q, Qiao C, Elder J, Webby R, Katze MG, Richt JA: 2009 pandemic H1N1 influenza virus causes disease and upregulation of genes related to inflammatory and immune responses, cell death, and lipid metabolism in pigs. J Virol 2011, 85:11626-11637.
  • [34]Ludwig S, Ehrhardt C, Neumeier ER, Kracht M, Rapp UR, Pleschka S: Influenza virus-induced AP-1-dependent gene expression requires activation of the JNK signaling pathway. J Biol Chem 2001, 276:10990-10998.
  • [35]Bot A, Rodrigo E, Wolfe T, Bot S, Von Herrath MG: Infection-triggered regulatory mechanisms override the role of STAT 4 in control of the immune response to influenza virus antigens. J Virol 2003, 77:5794-5800.
  • [36]Ronni T, Sareneva T, Pirhonen J, Julkunen I: Activation of IFN-alpha, IFN-gamma, MxA, and IFN regulatory factor 1 genes in influenza A virus-infected human peripheral blood mononuclear cells. J Immunol 1995, 154:2764-2774.
  • [37]Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC: Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 1998, 95:409-417.
  • [38]Steinhauer DA: Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999, 258:1-20.
  • [39]Salomon R, Hoffmann E, Webster RG: Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Natl Acad Sci USA 2007, 104:12479-12481.
  • [40]Cameron CM, Cameron MJ, Bermejo-Martin JF, Ran L, Xu L, Turner PV, Ran R, Danesh A, Fang Y, Chan PK, et al.: Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets. J Virol 2008, 82:11308-11317.
  • [41]Zheng BJ, Chan KW, Lin YP, Zhao GY, Chan C, Zhang HJ, Chen HL, Wong SS, Lau SK, Woo PC, et al.: Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci USA 2008, 105:8091-8096.
  • [42]Adams SC, Xing Z, Li J, Cardona CJ: Immune-related gene expression in response to H11N9 low pathogenic avian influenza virus infection in chicken and Pekin duck peripheral blood mononuclear cells. Mol Immunol 2009, 46:1744-1749.
  • [43]Xing Z, Cardona CJ, Li J, Dao N, Tran T, Andrada J: Modulation of the immune responses in chickens by low-pathogenicity avian influenza virus H9N2. J Gen Virol 2008, 89:1288-1299.
  • [44]Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003, 4:491-496.
  • [45]Kim MJ, Latham AG, Krug RM: Human influenza viruses activate an interferon-independent transcription of cellular antiviral genes: outcome with influenza A virus is unique. Proc Natl Acad Sci USA 2002, 99:10096-10101.
  • [46]Zhang B, Li M, Chen L, Yang K, Shan Y, Zhu L, Sun S, Li L, Wang C: The TAK1-JNK cascade is required for IRF3 function in the innate immune response. Cell Res 2009, 19:412-428.
  • [47]Grant CE, May DL, Deeley RG: DNA binding and transcription activation by chicken interferon regulatory factor-3 (chIRF-3). Nucleic Acids Res 2000, 28:4790-4799.
  • [48]May DL, Grant CE, Deeley RG: Cloning and promoter analysis of the chicken interferon regulatory factor-3 gene. DNA Cell Biol 2000, 19:555-566.
  • [49]Liniger M, Summerfield A, Zimmer G, McCullough KC, Ruggli N: Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J Virol 2012, 86:705-717.
  • [50]Flory E, Kunz M, Scheller C, Jassoy C, Stauber R, Rapp UR, Ludwig S: Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IkappaB kinase. J Biol Chem 2000, 275:8307-8314.
  • [51]Pahl HL, Baeuerle PA: Expression of influenza virus hemagglutinin activates transcription factor NF-kappa B. J Virol 1995, 69:1480-1484.
  • [52]Wang X, Hussain S, Wang EJ, Li MO, Garcia-Sastre A, Beg AA: Lack of essential role of NF-kappa B p50, RelA, and cRel subunits in virus-induced type 1 IFN expression. J Immunol 2007, 178:6770-6776.
  • [53]Wei L, Sandbulte MR, Thomas PG, Webby RJ, Homayouni R, Pfeffer LM: NFkappaB negatively regulates interferon-induced gene expression and anti-influenza activity. J Biol Chem 2006, 281:11678-11684.
  • [54]Kogut MH, Genovese KJ, He H, Kaiser P: Flagellin and lipopolysaccharide up-regulation of IL-6 and CXCLi2 gene expression in chicken heterophils is mediated by ERK1/2-dependent activation of AP-1 and NF-kappaB signaling pathways. Innate Immun 2008, 14:213-222.
  • [55]Kawai T, Akira S: Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008, 1143:1-20.
  • [56]Kim TK, Maniatis T: The mechanism of transcriptional synergy of an in vitro assembled interferon-beta enhanceosome. Mol Cell 1997, 1:119-129.
  • [57]Kujime K, Hashimoto S, Gon Y, Shimizu K, Horie T: p38 mitogen-activated protein kinase and c-jun-NH2-terminal kinase regulate RANTES production by influenza virus-infected human bronchial epithelial cells. J Immunol 2000, 164:3222-3228.
  • [58]Takeuchi O, Akira S: MDA5/RIG-I and virus recognition. Curr Opin Immunol 2008, 20:17-22.
  • [59]Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr: Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 2008, 454:523-527.
  • [60]McNulty MS, Allan GM, Todd D, McFerran JB, McKillop ER, Collins DS, McCracken RM: Isolation of rotaviruses from turkeys and chickens: demonstration of distinct serotypes and RNA electropherotypes. Avian Pathol 1980, 9:363-375.
  • [61]Lavrentieva IN, Medvedeva TE, Golubev DB: Characterization of the reproduction of influenza A epidemic viruses in cell cultures. Acta Virol 1986, 30:137-142.
  • [62]Reed LJ, Muench H: A simple method for estimating fifty percent endpoints. American Journal of Hygiene 1938, 27:493-497.
  • [63]Kapczynski DR, Kogut MH: Measurement of avian cytokines with real-time RT-PCR following infection with the avian influenza virus. Methods Mol Biol 2008, 436:127-134.
  • [64]Rue CA, Susta L, Cornax I, Brown CC, Kapczynski DR, Suarez DL, King DJ, Miller PJ, Afonso CL: Virulent Newcastle disease virus elicits a strong innate immune response in chickens. J Gen Virol 2011, 92:931-939.
  • [65]Morrison TB, Weis JJ, Wittwer CT: Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 1998, 24:954-958. 960, 962
  文献评价指标  
  下载次数:1次 浏览次数:4次