期刊论文详细信息
Virology Journal
Multiscale perspectives of virus entry via endocytosis
Jin Liu2  Anthony V Nicola1  Eric Barrow2 
[1] Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA;School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
关键词: Multiscale modeling;    Virus trafficking;    Multiple scales;    Endocytosis;    Theoretical modeling;    Viral entry;   
Others  :  1149899
DOI  :  10.1186/1743-422X-10-177
 received in 2013-04-24, accepted in 2013-05-24,  发布年份 2013
PDF
【 摘 要 】

Most viruses take advantage of endocytic pathways to gain entry into host cells and initiate infections. Understanding of virus entry via endocytosis is critically important for the design of antiviral strategies. Virus entry via endocytosis is a complex process involving hundreds of cellular proteins. The entire process is dictated by events occurring at multiple time and length scales. In this review, we discuss and evaluate the available means to investigate virus endocytic entry, from both experimental and theoretical/numerical modeling fronts, and highlight the importance of multiscale features. The complexity of the process requires investigations at a systems biology level, which involves the combination of different experimental approaches, the collaboration of experimentalists and theorists across different disciplines, and the development of novel multiscale models.

【 授权许可】

   
2013 Barrow et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405113345373.pdf 3424KB PDF download
Figure 5. 40KB Image download
Figure 4. 30KB Image download
Figure 3. 64KB Image download
Figure 2. 91KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Enquist LW: Virology in the 21st century. J Virol 2009, 83:5296-5308.
  • [2]Fauci AS: Emerging and re-emerging infectious diseases: influenza as a prototype of the host-pathogen balancing act. Cell 2006, 124:665-670.
  • [3]Morens DM, Folkers GK, Fauci AS: Emerging infections: a perpetual challenge. Lancet Infect Dis 2008, 8:710-719.
  • [4]Smith AE, Helenius A: How viruses enter animal cells. Science 2004, 304:237-242.
  • [5]Mercer J, Schelhaas M, Helenius A: Virus entry by Endocytosis. Annu Rev Biochem 2010, 79:803-833.
  • [6]Sieczkarski SB, Whittaker GR: Dissecting virus entry via endocytosis. J Gen Virol 2002, 83:1535-1545.
  • [7]Pelkmans L, Helenius A: Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 2003, 15:414-422.
  • [8]Marsh M, Helenius A: Virus entry: open sesame. Cell 2006, 124:729-740.
  • [9]Doherty GJ, McMahon HT: Mechanisms of endocytosis. Annu Rev Biochem 2009, 78:857-902.
  • [10]Ramanan V, Agrawal NJ, Liu J, Engles S, Toy R, Radhakrishnan R: Systems biology and physical biology of clathrin-mediated endocytosis. Integr Biol 2011, 3:803-815.
  • [11]Canton I, Battaglia G: Endocytosis at the nanoscale. Chem Soc Rev 2012, 41:2718-2739.
  • [12]Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB: HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 2009, 137:433-444.
  • [13]Mercer J, Helenius A: Virus entry by macropinocytosis. Nat Cell Biol 2009, 11:510-520.
  • [14]Nicola AV, Hou J, Major EO, Straus SE: Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol 2005, 79:7609-7616.
  • [15]Amstutz B, Gastaldelli M, Kalin S, Imelli N, Boucke K, Wandeler E, Mercer J, Hemmi S, Greber UF: Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 2008, 27:956-969.
  • [16]Mercer J, Helenius A: Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 2008, 320:531-535.
  • [17]Stang E, Kartenbeck J, Parton RG: Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol Biol Cell 1997, 8:47-57.
  • [18]Richterova Z, Liebl D, Horak M, Palkova Z, Stokrova J, Hozak P, Korb J, Forstova J: Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J Virol 2001, 75:10880-10891.
  • [19]Pelkmans L, Helenius A: Endocytosis via caveolae. Traffic 2002, 3:311-320.
  • [20]Sieczkarski SB, Whittaker GR: Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 2002, 76:10455-10464.
  • [21]Lakadamyali M, Rust MJ, Zhuang XW: Endocytosis of influenza viruses. Microbes Infect 2004, 6:929-936.
  • [22]Rust MJ, Lakadamyali M, Zhang F, Zhuang XW: Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol 2004, 11:567-573.
  • [23]Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M: Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 2005, 436:78-86.
  • [24]Damm E-M, Pelkmans L: Systems biology of virus entry in mammalian cells. Cell Microbiol 2006, 8:1219-1227.
  • [25]Greber UF: Signalling in viral entry. Cell Mol Life Sci 2002, 59:608-626.
  • [26]Gruenberg J: Viruses and endosome membrane dynamics. Curr Opin Cell Biol 2009, 21:582-588.
  • [27]Mayor S, Pagano RE: Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007, 8:603-612.
  • [28]Dales S: An electron microscope study of the early association between two mammalian viruses and their hosts. J Cell Biol 1962, 13:303-322.
  • [29]Nicola AV, McEvoy AM, Straus SE: Roles for endocytosis and Low pH in herpes simplex virus entry into HeLa and chinese hamster ovary cells. J Virol 2003, 77:5324-5332.
  • [30]Brandenburg B, Zhuang X: Virus trafficking - learning from single-virus tracking. Nat Rev Microbiol 2007, 5:197-208.
  • [31]Pelkmans L, Kartenbeck J, Helenius A: Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001, 3:473-483.
  • [32]Chen C, Zhuang X: Epsin 1 is a cargo-specific adaptor for the clathrin-mediated endocytosis of the influenza virus. Proc Natl Acad Sci USA 2008, 105:11790-11795.
  • [33]van der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit JM: Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 2008, 4:e1000244.
  • [34]Ewers H, Smith AE, Sbalzarini IF, Lilie H, Koumoutsakos P, Helenius A: Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci USA 2005, 102:15110-15115.
  • [35]Schelhaas M, Ewers H, Rajamaki M-L, Day PM, Schiller JT, Helenius A: Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog 2008, 4:e1000148.
  • [36]Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM: Imaging poliovirus entry in live cells. PLoS Biol 2007, 5:1543-1555.
  • [37]Vaughan JC, Brandenburg B, Hogle JM, Zhuang X: Rapid actin-dependent viral motility in live cells. Biophys J 2009, 97:1647-1656.
  • [38]Huang B, Bates M, Zhuang X: Super-Resolution Fluorescence Microscopy. Annu Rev Biochem Volume 78 2009, 993-1016. Annual Review of Biochemistry
  • [39]Rust MJ, Bates M, Zhuang X: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006, 3:793-795.
  • [40]Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF: Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313:1642-1645.
  • [41]Gustafsson MGL: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 2005, 102:13081-13086.
  • [42]Pereira CF, Rossy J, Owen DM, Mak J, Gaus K: HIV taken by STORM: super-resolution fluorescence microscopy of a viral infection. Virol J 2012, 9:84. BioMed Central Full Text
  • [43]Rossman JS, Leser GP, Lamb RA: Filamentous influenza virus enters cells via macropinocytosis. J Virol 2012, 86:10950-10960.
  • [44]Subramaniam S, Bartesaghi A, Liu J, Bennett AE, Sougrat R: Electron tomography of viruses. Curr Opin Struct Biol 2007, 17:596-602.
  • [45]Grunewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, Baumeister W, Steven AC: Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 2003, 302:1396-1398.
  • [46]Forster F, Medalia O, Zauberman N, Baumeister W, Fass D: Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc Natl Acad Sci USA 2005, 102:4729-4734.
  • [47]Cyrklaff M, Risco C, Fernandez JJ, Jimenez MV, Esteban M, Baumeister W, Carrascosa JL: Cryo-electron tomography of vaccinia virus. Proc Natl Acad Sci USA 2005, 102:2772-2777.
  • [48]Zanetti G, Briggs JAG, Gruenewald K, Sattentau QJ, Fuller SD: Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog 2006, 2:e83.
  • [49]Zhu P, Liu J, Bess J, Chertova E, Lifson JD, Grise H, Ofek GA, Taylor KA, Roux KH: Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 2006, 441:847-852.
  • [50]Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M, White JM, Steven AC: Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci USA 2006, 103:19123-19127.
  • [51]Bharat TAM, Noda T, Riches JD, Kraehling V, Kolesnikova L, Becker S, Kawaoka Y, Briggs JAG: Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc Natl Acad Sci USA 2012, 109:4275-4280.
  • [52]Iwasaki K, Omura T: Electron tomography of the supramolecular structure of virus-infected cells. Curr Opin Struct Biol 2010, 20:632-639.
  • [53]Sougrat R, Bartesaghi A, Lifson JD, Bennett AE, Bess JW, Zabransky DJ, Subramaniam S: Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog 2007, 3:571-581.
  • [54]Maurer UE, Sodeik B, Gruenewald K: Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc Natl Acad Sci USA 2008, 105:10559-10564.
  • [55]Peng L, Ryazantsev S, Sun R, Zhou ZH: Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure 2010, 18:47-58.
  • [56]Cyrklaff M, Linaroudis A, Boicu M, Chlanda P, Baumeister W, Griffiths G, Krijnse-Locker J: Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLoS One 2007, 2:e420.
  • [57]Welsch S, Kolesnikova L, Kraehling V, Riches JD, Becker S, Briggs JAG: Electron tomography reveals the steps in filovirus budding. PLoS Pathog 2010, 6:e1000875.
  • [58]Grove J, Marsh M: The cell biology of receptor-mediated virus entry. J Cell Biol 2011, 195:1071-1082.
  • [59]Willis SH, Rux AH, Peng C, Whitbeck JC, Nicola AV, Lou H, Hou WF, Salvador L, Eisenberg RJ, Cohen GH: Examination of the kinetics of herpes simplex virus glycoprotein D binding to the herpesvirus entry mediator, using surface plasmon resonance. J Virol 1998, 72:5937-5947.
  • [60]Milne RSB, Hanna SL, Rux AH, Willis SH, Cohen GH, Eisenberg RJ: Function of herpes simplex virus type 1 gD mutants with different receptor-binding affinities in virus entry and fusion. J Virol 2003, 77:8962-8972.
  • [61]Alessandrini A, Facci P: AFM: a versatile tool in biophysics. Meas Sci Technol 2005, 16:R65-R92.
  • [62]Alessandrini A, Facci P: Unraveling lipid/protein interaction in model lipid bilayers by atomic force microscopy. J Mol Recognit 2011, 24:387-396.
  • [63]Ovalle-Garcia E, Torres-Heredia JJ, Antillon A, Ortega-Blake I: Simultaneous determination of the elastic properties of the lipid bilayer by atomic force microscopy: bending, tension, and adhesion. J Phys Chem B 2011, 115:4826-4833.
  • [64]Cross SE, Jin Y-S, Rao J, Gimzewski JK: Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2007, 2:780-783.
  • [65]Iyer S, Gaikwad RM, Subba-Rao V, Woodworth CD, Sokolov I: Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat Nanotechnol 2009, 4:389-393.
  • [66]Wirtz D, Konstantopoulos K, Searson PC: The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 2011, 11:512-522.
  • [67]McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, Nicholson JKA: Binding of HTLV-III/LAV to T4$^{+}$ T cells by a complex of the 110K viral protein and the T4 molecule. Science 1986, 231:382-385.
  • [68]Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ: Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 1987, 50:975-985.
  • [69]Chang MI, Panorchan P, Dobrowsky TM, Tseng Y, Wirtz D: Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells. J Virol 2005, 79:14748-14755.
  • [70]Dobrowsky TM, Zhou Y, Sun SX, Siliciano RF, Wirtz D: Monitoring early fusion dynamics of human immunodeficiency virus type 1 at single-molecule resolution. J Virol 2008, 82:7022-7033.
  • [71]van Effenterre D, Roux D: Adhesion of colloids on a cell surface in competition for mobile receptors. Europhys Lett 2003, 64:543-549.
  • [72]Gao HJ, Shi WD, Freund LB: Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 2005, 102:9469-9474.
  • [73]Aoyama Y, Kanamori T, Nakai T, Sasaki T, Horiuchi S, Sando S, Niidome T: Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 2003, 125:3455-3457.
  • [74]Nakai T, Kanamori T, Sando S, Aoyama Y: Remarkably size-regulated cell invasion by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J Am Chem Soc 2003, 125:8465-8475.
  • [75]Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y: A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J Am Chem Soc 2004, 126:6520-6521.
  • [76]Yi X, Shi X, Gao H: Cellular uptake of elastic nanoparticles. Phys Rev Lett 2011, 107:098101.
  • [77]Sun SX, Wirtz D: Mechanics of enveloped virus entry into host cells. Biophys J 2006, 90:L10-L12.
  • [78]Li L, Liu X, Zhou Y, Wang J: On resistance to virus entry into host cells. Biophys J 2012, 102:2230-2233.
  • [79]Decuzzi P, Ferrari M: The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 2007, 28:2915-2922.
  • [80]Decuzzi P, Ferrari M: The receptor-mediated endocytosis of nonspherical particles. Biophys J 2008, 94:3790-3797.
  • [81]Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S: Size-dependent endocytosis of nanoparticles. Adv Mater 2009, 21:419-424.
  • [82]Yuan H, Huang C, Zhang S: Virus-inspired design principles of nanoparticle-based bioagents. PLoS One 2010, 5:e13495.
  • [83]Yuan H, Zhang S: Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles. Appl Phys Lett 2010, 96:033704.
  • [84]English TJ, Hammer DA: Brownian adhesive dynamics (BRAD) for simulating the receptor-mediated binding of viruses. Biophys J 2004, 86:3359-3372.
  • [85]English TJ, Hammer DA: The effect of cellular receptor diffusion on receptor-mediated viral binding using brownian adhesive dynamics (BRAD) simulations. Biophys J 2005, 88:1666-1675.
  • [86]Trister AD, Hammer DA: Role of gp120 trimerization on HIV binding elucidated with brownian adhesive dynamics. Biophys J 2008, 95:40-53.
  • [87]Dobrowsky TM, Daniels BR, Siliciano RF, Sun SX, Wirtz D: Organization of cellular receptors into a nanoscale junction during HIV-1 adhesion. PLoS Comput Biol 2010, 6:e1000855.
  • [88]Liu J, Weller GER, Zern B, Ayyaswamy PS, Eckmann DM, Muzykantov VR, Radhakrishnan R: Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments. Proc Natl Acad Sci USA 2010, 107:16530-16535.
  • [89]Liu J, Agrawal NJ, Calderon A, Ayyaswamy PS, Eckmann DM, Radhakrishnan R: Multivalent binding of nanocarrier to endothelial cells under shear flow. Biophys J 2011, 101:319-326.
  • [90]Liu J, Bradley R, Eckmann DM, Ayyaswamy PS, Radhakrishnan R: Multiscale modeling of functionalized nanocarriers in targeted drug delivery. Curr Nanosci 2011, 7:727-735.
  • [91]Ramakrishnan N, Kumar PBS, Ipsen JH: Monte Carlo simulations of fluid vesicles with in-plane orientational ordering. Phys Rev E 2010, 81:041922.
  • [92]Liu J, Tourdot R, Ramanan V, Agrawal NJ, Radhakrishanan R: Mesoscale simulations of curvature-inducing protein partitioning on lipid bilayer membranes in the presence of mean curvature fields. Mol Phys 2012, 110:1127-1137.
  • [93]Vacha R, Martinez-Veracoechea FJ, Frenkel D: Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 2011, 11:5391-5395.
  • [94]Shi X, von dem Bussche A, Hurt RH, Kane AB, Gao H: Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 2011, 6:714-719.
  • [95]Yue T, Zhang X: Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles. Soft Matter 2011, 7:9104-9112.
  • [96]Li Y, Yue T, Yang K, Zhang X: Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials 2012, 33:4965-4973.
  • [97]Ding H-m, Ma Y-q: Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials 2012, 33:5798-5802.
  • [98]Yue T, Zhang X: Molecular modeling of the pathways of vesicle-membrane interaction. Soft Matter 2013, 9:559-569.
  • [99]Teissier E, Penin F, Pecheur E-I: Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules 2011, 16:221-250.
  • [100]O’Connell ST, Thompson PA: Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 1995, 52:R5792-R5795.
  • [101]Hadjiconstaninou NG, Patera AT: Heterogeneous atomistic-continuum representations for dense fluid systems. Int J Mod Phys C 1997, 8:967-976.
  • [102]Flekkoy EG, Wagner G, Feder J: Hybrid model for combined particle and continuum dynamics. Europhys Lett 2000, 52:271-276.
  • [103]Engquist B, Li X, Ren W, Vanden-Eijnden E, E W: Heterogeneous multiscale methods: A review. Commun Comput Phys 2007, 2:367-450.
  • [104]Liu J, Chen SY, Nie XB, Robbins MO: A continuum-atomistic simulation of heat transfer in micro- and nano-flows. J Comput Phys 2007, 227:279-291.
  文献评价指标  
  下载次数:30次 浏览次数:19次