期刊论文详细信息
Retrovirology
Virion stiffness regulates immature HIV-1 entry
Itay Rousso3  Michael S Kay2  Marianna Tsvitov4  Debra M Eckert2  Nitzan Kol4  Liron Hevroni4  Hong-Bo Pang1 
[1] Present address: Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA;Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA;Present address: Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel;Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
关键词: Stiffness;    Maturation;    Atomic force microscopy;    Viral entry;    HIV;   
Others  :  1209190
DOI  :  10.1186/1742-4690-10-4
 received in 2012-06-21, accepted in 2012-12-29,  发布年份 2013
PDF
【 摘 要 】

Background

Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a “stiffness switch”, a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein.

Results

In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus.

Conclusions

This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy.

【 授权许可】

   
2013 Pang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602090258880.pdf 1390KB PDF download
Figure 10. 40KB Image download
Figure 9. 34KB Image download
Figure 8. 24KB Image download
Figure 7. 36KB Image download
Figure 6. 43KB Image download
Figure 5. 25KB Image download
Figure 4. 37KB Image download
Figure 3. 24KB Image download
Figure 2. 32KB Image download
Figure 1. 120KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Wills JW, Craven RC: Form, function, and use of retroviral gag proteins. AIDS 1991, 5:639-654.
  • [2]Berger EA, Murphy PM, Farber JM: Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999, 17:657-700.
  • [3]Chan DC, Kim PS: HIV entry and its inhibition. Cell 1998, 93:681-684.
  • [4]Wyma DJ, Kotov A, Aiken C: Evidence for a stable interaction of gp41 with Pr55(Gag) in immature human immunodeficiency virus type 1 particles. J Virol 2000, 74:9381-9387.
  • [5]Cosson P: Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 1996, 15:5783-5788.
  • [6]Jiang J, Aiken C: Maturation-dependent human immunodeficiency virus type 1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail. J Virol 2007, 81:9999-10008.
  • [7]Swanstrom R, Wills JW: Synthesis, assembly, and processing of viral proteins in retrovirus. Plainview, NY: Cold Spring Harbor Laboratory Press; 1997:263-334.
  • [8]Coffin JM, Hughes SH, Varmus HE: Retroviruses. Plainview, NY: Cold Spring Harbor Laboratory Press; 1997.
  • [9]Kol N, Gladnikoff M, Barlam D, Shneck RZ, Rein A, Rousso I: Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys J 2006, 91:767-774.
  • [10]Ivanovska IL, de Pablo PJ, Ibarra B, Sgalari G, MacKintosh FC, Carrascosa JL, Schmidt CF, Wuite GJ: Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci U S A 2004, 101:7600-7605.
  • [11]Michel JP, Ivanovska IL, Gibbons MM, Klug WS, Knobler CM, Wuite GJ, Schmidt CF: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci U S A 2006, 103:6184-6189.
  • [12]Carrasco C, Carreira A, Schaap IA, Serena PA, Gomez-Herrero J, Mateu MG, de Pablo PJ: DNA-mediated anisotropic mechanical reinforcement of a virus. Proc Natl Acad Sci U S A 2006, 103:13706-13711.
  • [13]Kol N, Shi Y, Tsvitov M, Barlam D, Shneck RZ, Kay MS, Rousso I: A stiffness switch in human immunodeficiency virus. Biophys J 2007, 92:1777-1783.
  • [14]Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C: Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 2004, 78:3429-3435.
  • [15]Murakami T, Ablan S, Freed EO, Tanaka Y: Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 2004, 78:1026-1031.
  • [16]Edwards TG, Wyss S, Reeves JD, Zolla-Pazner S, Hoxie JA, Doms RW, Baribaud F: Truncation of the cytoplasmic domain induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J Virol 2002, 76:2683.
  • [17]Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB: HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 2009, 137:433-444.
  • [18]Superti F, Seganti L, Ruggeri FM, Tinari A, Donelli G, Orsi N: Entry pathway of vesicular stomatitis virus into different host cells. J Gen Virol 1987, 68(Pt 2):387-399.
  • [19]Marsh M, Helenius A: Virus entry: open sesame. Cell 2006, 124:729-740.
  • [20]Sader JE, Chon JW, Mulvaney P: Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 1999, 70:3967-3969.
  • [21]Dong XN, Xiao Y, Dierich MP, Chen YH: N- and C-domains of HIV-1 gp41: mutation, structure and functions. Immunol Lett 2001, 75:215-220.
  • [22]Chen BK, Gandhi RT, Baltimore D: CD4 down-modulation during infection of human T cells with human immunodeficiency virus type 1 involves independent activities of vpu, env, and nef. J Virol 1996, 70:6044-6053.
  • [23]Wu Z, Alexandratos J, Ericksen B, Lubkowski J, Gallo RC, Lu W: Total chemical synthesis of N-myristoylated HIV-1 matrix protein p17: structural and mechanistic implications of p17 myristoylation. Proc Natl Acad Sci U S A 2004, 101:11587-11592.
  • [24]Ganser-Pornillos BK, Yeager M, Sundquist WI: The structural biology of HIV assembly. Curr Opin Struct Biol 2008, 18:203-217.
  • [25]Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grise H, Ofek GA, Taylor KA, Roux KH: Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 2006, 441:847-852.
  • [26]Cimarelli A, Darlix JL: Assembling the human immunodeficiency virus type 1. Cell Mol Life Sci 2002, 59:1166-1184.
  • [27]Frankel AD, Young JA: HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 1998, 67:1-25.
  • [28]Turner BG, Summers MF: Structural biology of HIV. J Mol Biol 1999, 285:1-32.
  • [29]Waheed AA, Ablan SD, Mankowski MK, Cummins JE, Ptak RG, Schaffner CP, Freed EO: Inhibition of HIV-1 replication by amphotericin B methyl ester: selection for resistant variants. J Biol Chem 2006, 281:28699-28711.
  • [30]Waheed AA, Ablan SD, Roser JD, Sowder RC, Schaffner CP, Chertova E, Freed EO: HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease. Proc Natl Acad Sci U S A 2007, 104:8467-8471.
  • [31]Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG: The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci U S A 2006, 103:2641-2646.
  • [32]Aloia RC, Tian H, Jensen FC: Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci U S A 1993, 90:5181-5185.
  • [33]Dehart JL, Andersen JL, Zimmerman ES, Ardon O, An DS, Blackett J, Kim B, Planelles V: The ataxia telangiectasia-mutated and Rad3-related protein is dispensable for retroviral integration. J Virol 2005, 79:1389-1396.
  • [34]Chen BK, Saksela K, Andino R, Baltimore D: Distinct modes of human immunodeficiency virus type 1 proviral latency revealed by superinfection of nonproductively infected cell lines with recombinant luciferase-encoding viruses. J Virol 1994, 68:654-660.
  • [35]Yee JK, Miyanohara A, LaPorte P, Bouic K, Burns JC, Friedmann T: A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 1994, 91:9564-9568.
  • [36]O’Rourke JP, Olsen JC, Bunnell BA: Optimization of equine infectious anemia derived vectors for hematopoietic cell lineage gene transfer. Gene Ther 2005, 12:22-29.
  • [37]Binley JM, Cayanan CS, Wiley C, Schulke N, Olson WC, Burton DR: Redox-triggered infection by disulfide-shackled human immunodeficiency virus type 1 pseudovirions. J Virol 2003, 77:5678-5684.
  • [38]Dubay JW, Roberts SJ, Hahn BH, Hunter E: Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol 1992, 66:6616-6625.
  • [39]Hamburger AE, Kim S, Welch BD, Kay MS: Steric accessibility of the HIV-1 gp41 N-trimer region. J Biol Chem 2005, 280:12567-12572.
  • [40]Kol N, Tsvitov M, Hevroni L, Wolf SG, Pang HB, Kay MS, Rousso I: The effect of purification method on the completeness of the immature HIV-1 Gag shell. J Virol Methods 2010, 169:244-247.
  • [41]Hutter JL, Bechhoefer J: Calibration of atomic-force microscopy tips. Rev Sci Instrum 1993, 64:1868-1873.
  文献评价指标  
  下载次数:84次 浏览次数:8次