期刊论文详细信息
Molecular Pain
Impaired noradrenaline homeostasis in rats with painful diabetic neuropathy as a target of duloxetine analgesia
Fusao Kato1  Kazunori Utsunomiya3  Ayako M Watabe1  Yukari Takahashi2  Jun Kinoshita3 
[1] Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;Department of Neuroscience, Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan;Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
关键词: Norepinephrine transporter;    Dopamine-beta-hydroxylase;    Spinal cord;    Duloxetine;    DSP-4;    Noradrenaline;    Diabetes mellitus;    Streptozotocin;    Pain;   
Others  :  862105
DOI  :  10.1186/1744-8069-9-59
 received in 2013-09-19, accepted in 2013-11-22,  发布年份 2013
PDF
【 摘 要 】

Background

Painful diabetic neuropathy (PDN) is a serious complication of diabetes mellitus that affects a large number of patients in many countries. The molecular mechanisms underlying the exaggerated nociception in PDN have not been established. Recently, duloxetine (DLX), a serotonin and noradrenaline re-uptake inhibitor, has been recommended as one of the first-line treatments of PDN in the United States Food and Drug Administration, the European Medicines Agency and the Japanese Guideline for the Pharmacologic Management of Neuropathic pain. Because selective serotonin re-uptake inhibitors show limited analgesic effects in PDN, we examined whether the potent analgesic effect of DLX contributes toward improving the pathologically aberrant noradrenaline homeostasis in diabetic models.

Results

In streptozotocin (STZ) (50 mg/kg, i.v.)-induced diabetic rats that exhibited robust mechanical allodynia and thermal hyperalgesia, DLX (10 mg/kg, i.p.) significantly and markedly increased the nociceptive threshold. The analgesic effect of DLX was nullified by the prior administration of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) (50 mg/kg, i.p.), which drastically eliminated dopamine-beta-hydroxylase- and norepinephrine transporter-immunopositive fibers in the lumbar spinal dorsal horn and significantly reduced the noradrenaline content in the lumbar spinal cord. The treatment with DSP-4 alone markedly lowered the nociceptive threshold in vehicle-treated non-diabetic rats; however, this pro-nociceptive effect was occluded in STZ-treated diabetic rats. Furthermore, STZ-treated rats exhibited a higher amount of dopamine-beta-hydroxylase- and norepinephrine transporter-immunopositive fibers in the dorsal horn and noradrenaline content in the spinal cord compared to vehicle-treated rats.

Conclusions

Impaired noradrenaline-mediated regulation of the spinal nociceptive network might underlie exaggerated nociception in PDN. DLX might exert its analgesic effect by selective enhancement of noradrenergic signals, thus counteracting this situation.

【 授权许可】

   
2013 Kinoshita et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725011135497.pdf 1816KB PDF download
121KB Image download
145KB Image download
131KB Image download
129KB Image download
87KB Image download
78KB Image download
【 图 表 】

【 参考文献 】
  • [1]Gooch C, Podwall D: The diabetic neuropathies. Neurologist 2004, 10:311-322.
  • [2]Barrett AM, Lucero MA, Le T, Robinson RL, Dworkin RH, Chappell AS: Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review. Pain Med 2007, 8(Suppl 2):S50-S62.
  • [3]Van Acker K, Bouhassira D, De Bacquer D, Weiss S, Matthys K, Raemen H, Mathieu C, Colin IM: Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab 2009, 35:206-213.
  • [4]Tesfaye S: Advances in the management of diabetic peripheral neuropathy. Curr Opin Support Palliat Care 2009, 3:136-143.
  • [5]Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL: Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 2012, 11:521-534.
  • [6]Bishnoi M, Bosgraaf CA, Abooj M, Zhong L, Premkumar LS: Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(TRPV1) and inflammatory mediators. Mol Pain 2011, 7:52. BioMed Central Full Text
  • [7]Tesfaye S, Selvarajah D: Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 2012, 28(Suppl 1):8-14.
  • [8]Goldstein DJ, Lu Y, Detke MJ, Lee TC, Iyengar S: Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 2005, 116:109-118.
  • [9]Raskin J, Pritchett YL, Wang F, D’Souza DN, Waninger AL, Iyengar S, Wernicke JF: A double-blind, randomized multicenter trial comparing duloxetine with placebo in the management of diabetic peripheral neuropathic pain. Pain Med 2005, 6:346-356.
  • [10]Wernicke JF, Pritchett YL, D’Souza DN, Waninger A, Tran P, Iyengar S, Raskin J: A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology 2006, 67:1411-1420.
  • [11]Kuhad A, Bishnoi M, Chopra K: Anti-nociceptive effect of duloxetine in mouse model of diabetic neuropathic pain. Indian J Exp Biol 2009, 47:193-197.
  • [12]Mixcoatl-Zecuatl T, Jolivalt CG: A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br J Pharmacol 2011, 164:159-169.
  • [13]Wattiez AS, Libert F, Privat AM, Loiodice S, Fialip J, Eschalier A, Courteix C: Evidence for a differential opioidergic involvement in the analgesic effect of antidepressants: prediction for efficacy in animal models of neuropathic pain? Br J Pharmacol 2011, 163:792-803.
  • [14]Rowbotham MC, Goli V, Kunz NR, Lei D: Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study. Pain 2004, 110:697-706.
  • [15]Cegielska-Perun K, Bujalska-Zadrożny M, Makulska-Nowak HE: Modification of morphine analgesia by venlafaxine in diabetic neuropathic pain model. Pharmacol Rep 2012, 64:1267-1275.
  • [16]Cegielska-Perun K, Bujalska-Zadrożny M, Tatarkiewicz J, Gasińska E, Makulska-Nowak HE: Venlafaxine and neuropathic pain. Pharmacology 2013, 91:69-76.
  • [17]Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpaa ML, Kent JL, Krane EJ, Lebel AA, Levy RM, Mackey SC, Mayer J, Miaskowski C, Raja SN, Rice AS, Schmader KE, Stacey B, Stanos S, Treede RD, Turk DC, Walco GA, Wells CD: Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 2010, 85:S3-S14.
  • [18]Brannan SK, Mallinckrodt CH, Brown EB, Wohlreich MM, Watkin JG, Schatzberg AF: Duloxetine 60 mg once-daily in the treatment of painful physical symptoms in patients with major depressive disorder. J Psychiatr Res 2005, 39:43-53.
  • [19]Perahia DG, Pritchett YL, Desaiah D, Raskin J: Efficacy of duloxetine in painful symptoms: an analgesic or antidepressant effect? Int Clin Psychopharmacol 2006, 21:311-317.
  • [20]Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Miaskowski C, Nurmikko TJ, Portenoy RK, Rice AS, Stacey BR, Treede RD, Turk DC, Wallace MS: Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 2007, 132:237-251.
  • [21]Ma W, Eisenach JC: Chronic constriction injury of sciatic nerve induces the up-regulation of descending inhibitory noradrenergic innervation to the lumbar dorsal horn of mice. Brain Res 2003, 970:110-118.
  • [22]Brussee V, Cunningham FA, Zochodne DW: Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes 2004, 53:1824-1830.
  • [23]Tsuda M, Inoue K, Salter MW: Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 2005, 28:101-107.
  • [24]Robertson SD, Matthies HJ, Owens WA, Sathananthan V, Christianson NS, Kennedy JP, Lindsley CW, Daws LC, Galli A: Insulin reveals Akt signaling as a novel regulator of norepinephrine transporter trafficking and norepinephrine homeostasis. J Neurosci 2010, 30:11305-11316.
  • [25]Hoybergs YM, Meert TF: The effect of low-dose insulin on mechanical sensitivity and allodynia in type I diabetes neuropathy. Neurosci Lett 2007, 417:149-154.
  • [26]Millan MJ: Descending control of pain. Prog Neurobiol 2002, 66:355-474.
  • [27]Tracey I, Mantyh PW: The cerebral signature for pain perception and its modulation. Neuron 2007, 55:377-391.
  • [28]Cirelli C, Tononi G: Locus ceruleus control of state-dependent gene expression. J Neurosci 2004, 24:5410-5419.
  • [29]Ammar AA, Södersten P, Johnson AE: Locus coeruleus noradrenergic lesions attenuate intraoral intake. Neuroreport 2001, 12:3095-3099.
  • [30]Yamamoto H, Shimoshige Y, Yamaji T, Murai N, Aoki T, Matsuoka N: Pharmacological characterization of standard analgesics on mechanical allodynia in streptozotocin-induced diabetic rats. Neuropharmacology 2009, 57:403-408.
  • [31]Xu GY, Li G, Liu N, Huang LY: Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol Pain 2011, 7:60. BioMed Central Full Text
  • [32]Kudo T, Kushikata T, Kudo M, Kudo T, Hirota K: A central neuropathic pain model by DSP-4 induced lesion of noradrenergic neurons: preliminary report. Neurosci Lett 2010, 481:102-104.
  • [33]Kudo T, Kushikata T, Kudo M, Kudo T, Hirota K: Antinociceptive effects of neurotropin in a rat model of central neuropathic pain: DSP-4 induced noradrenergic lesion. Neurosci Lett 2011, 503:20-22.
  • [34]Jonsson G, Hallman H, Ponzio F, Ross S: DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)–a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol 1981, 72:173-188.
  • [35]Torres GE, Gainetdinov RR, Caron MG: Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 2003, 4:13-25.
  • [36]Koch S, Hemrick-Luecke SK, Thompson LK, Evans DC, Threlkeld PG, Nelson DL, Perry KW, Bymaster FP: Comparison of effects of dual transporter inhibitors on monoamine transporters and extracellular levels in rats. Neuropharmacology 2003, 45:935-944.
  • [37]Obata H, Kimura M, Nakajima K, Tobe M, Nishikawa K, Saito S: Monoamine-dependent, opioid-independent antihypersensitivity effects of intrathecally administered milnacipran, a serotonin noradrenaline reuptake inhibitor, in a postoperative pain model in rats. J Pharmacol Exp Ther 2010, 334:1059-1065.
  • [38]Zhao ZQ, Chiechio S, Sun YG, Zhang KH, Zhao CS, Scott M, Johnson RL, Deneris ES, Renner KJ, Gereau RW 4th, Chen ZF: Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 2007, 27:6045-6053.
  • [39]Jasmin L, Tien D, Weinshenker D, Palmiter RD, Green PG, Janni G, Ohara PT: The NK1 receptor mediates both the hyperalgesia and the resistance to morphine in mice lacking noradrenaline. Proc Natl Acad Sci USA 2002, 99:1029-1034.
  • [40]Eide K, Hole K: Interactions between substance P and norepinephrine in the regulation of nociception in mouse spinal cord. Pharmacol Toxicol 1992, 70:397-401.
  • [41]Yang SW, Zhang ZH, Wang R, Xie YF, Qiao JT, Dafny N: Norepinephrine and serotonin-induced antinociception are blocked by naloxone with different dosages. Brain Res Bull 1994, 35:113-117.
  • [42]Omiya Y, Suzuki Y, Yuzurihara M, Murata M, Aburada M, Kase Y, Takeda S: Antinociceptive effect of shakuyakukanzoto, a Kampo medicine, in diabetic mice. J Pharmacol Sci 2005, 99:373-380.
  • [43]Nakajima K, Obata H, Iriuchijima N, Saito S: An increase in spinal cord noradrenaline is a major contributor to the antihyperalgesic effect of antidepressants after peripheral nerve injury in the rat. Pain 2012, 153:990-997.
  • [44]Bitar MS, Pilcher CW: Diabetes attenuates the response of the lumbospinal noradrenergic system to idazoxan. Pharmacol Biochem Behav 2000, 67:247-255.
  • [45]Morgado C, Silva L, Pereira-Terra P, Tavares I: Changes in serotoninergic and noradrenergic descending pain pathways during painful diabetic neuropathy: the preventive action of IGF1. Neurobiol Dis 2011, 43:275-284.
  • [46]Iversen L: Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 2006, 147(Suppl 1):S82-S88.
  • [47]Bönisch H, Brüss M: The norepinephrine transporter in physiology and disease. Handb Exp Pharmacol 2006, 175:485-524.
  • [48]Boyd FT Jr, Clarke DW, Raizada MK: Insulin inhibits specific norepinephrine uptake in neuronal cultures from rat brain. Brain Res 1986, 398:1-5.
  • [49]Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM: Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res 1993, 602:161-164.
  • [50]Figlewicz DP, Brot MD, McCall AL, Szot P: Diabetes causes differential changes in CNS noradrenergic and dopaminergic neurons in the rat: a molecular study. Brain Res 1996, 736:54-60.
  • [51]Bohn LM, Xu F, Gainetdinov RR, Caron MG: Potentiated opioid analgesia in norepinephrine transporter knock-out mice. J Neurosci 2000, 20:9040-9045.
  • [52]Hall FS, Schwarzbaum JM, Perona MT, Templin JS, Caron MG, Lesch KP, Murphy DL, Uhl GR: A greater role for the norepinephrine transporter than the serotonin transporter in murine nociception. Neuroscience 2011, 175:315-327.
  • [53]Romanovsky D, Hastings SL, Stimers JR, Dobretsov M: Relevance of hyperglycemia to early mechanical hyperalgesia in streptozotocin-induced diabetes. J Peripher Nerv Syst 2004, 9:62-69.
  • [54]Bymaster FP, Dreshfield-Ahmad LJ, Threlkeld PG, Shaw JL, Thompson L, Nelson DL, Hemrick-Luecke SK, Wong DT: Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacol 2001, 25:871-880.
  • [55]Bitar MS, Bajic KT, Farook T, Thomas MI, Pilcher CW: Spinal cord noradrenergic dynamics in diabetic and hypercortisolaemic states. Brain Res 1999, 830:1-9.
  • [56]Piech-Dumas KM, Best JA, Chen Y, Nagamoto-Combs K, Osterhout CA, Tank AW: The cAMP responsive element and CREB partially mediate the response of the tyrosine hydroxylase gene to phorbol ester. J Neurochem 2001, 76:1376-1385.
  • [57]Hayashida K, Clayton BA, Johnson JE, Eisenach JC: Brain derived nerve growth factor induces spinal noradrenergic fiber sprouting and enhances clonidine analgesia following nerve injury in rats. Pain 2008, 136:348-355.
  • [58]Morgado C, Pereira-Terra P, Cruz CD, Tavares I: Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord. Diabetes Obes Metab 2011, 13:150-159.
  • [59]Omiya Y, Yuzurihara M, Suzuki Y, Kase Y, Kono T: Role of alpha2-adrenoceptors in enhancement of antinociceptive effect in diabetic mice. Eur J Pharmacol 2008, 592:62-66.
  • [60]Chen SR, Chen H, Yuan WX, Pan HL: Increased presynaptic and postsynaptic alpha2-adrenoceptor activity in the spinal dorsal horn in painful diabetic neuropathy. J Pharmacol Exp Ther 2011, 337:285-292.
  • [61]Kihara T, Ikeda M: Effects of duloxetine, a new serotonin and norepinephrine uptake inhibitor, on extracellular monoamine levels in rat frontal cortex. J Pharmacol Exp Ther 1995, 272:177-183.
  • [62]Gobert A, Rivet JM, Cistarelli L, Melon C, Millan MJ: Alpha2-adrenergic receptor blockade markedly potentiates duloxetine- and fluoxetine-induced increases in noradrenaline, dopamine, and serotonin levels in the frontal cortex of freely moving rats. J Neurochem 1997, 69:2616-2619.
  • [63]Sarhan M, Pawlowski SA, Barthas F, Yalcin I, Kaufling J, Dardente H, Zachariou V, Dileone RJ, Barrot M, Veinante P: BDNF parabrachio-amygdaloid pathway in morphine-induced analgesia. Int J Neuropsychopharmacol 2013, 16:1649-1660.
  • [64]Ikeda R, Takahashi Y, Inoue K, Kato F: NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 2007, 127:161-172.
  • [65]Ochiai T, Takahashi Y, Asato M, Watabe AM, Ohsawa M, Kamei J, Kato F: Bilateral potentiation of parabrachial, but not basolateral amygdala inputs, to central capsular amygdala neurons in neuropathic diabetic mice. New Orleans: Annual Meeting of the Society for Neuroscience; 2012:703-785.
  • [66]Delaney AJ, Crane JW, Sah P: Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron 2007, 56:880-892.
  • [67]Ortiz JP, Heinricher MM, Selden NR: Noradrenergic agonist administration into the central nucleus of the amygdala increases the tail-flick latency in lightly anesthetized rats. Neuroscience 2007, 148:737-743.
  • [68]Ziegler D, Pritchett YL, Wang F, Desaiah D, Robinson MJ, Hall JA, Chappell AS: Impact of disease characteristics on the efficacy of duloxetine in diabetic peripheral neuropathic pain. Diabetes Care 2007, 30:664-669.
  • [69]Kim B, Feldman EL: Insulin resistance in the nervous system. Trends Endocrinol Metab 2012, 23:133-141.
  • [70]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53:55-63.
  • [71]Dirig D, Salami A, Rathbun ML, Ozaki GT, Yaksh TL: Characterization of variables defining hindpaw withdrawal latency evoked by radiant thermal stimuli. J Neurosci Methods 1997, 76:183-191.
  • [72]Fritschy JM, Grzanna R: Selective effects of DSP-4 on locus coeruleus axons: are there pharmacologically different types of noradrenergic axons in the central nervous system? Prog Brain Res 1991, 88:257-268.
  文献评价指标  
  下载次数:18次 浏览次数:10次