期刊论文详细信息
Molecular Cytogenetics
A specific family of interspersed repeats (SINEs) facilitates meiotic synapsis in mammals
Terry Hassold1  Jeffrey Bailey2  Catherine VandeVoort3  Sofia Shirley1  Ross A Rowsey1  Matthew E Johnson1 
[1] Washington State University, School of Molecular Biosciences and Center for Reproductive Biology, Biotechnology-Life Science Building, 1715 NE Fairway Road, Pullman, WA 99164, USA;University of Massachusetts Program in Bioinformatics and Integrative Biology and Division of Transfusion Medicine, 55 Lake Avenue N, Worcester, MA 01605, USA;California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
关键词: Macaque;    Mouse;    SYCP3;    Synapsis;    SINE;    Chromatin Immunoprecipitation (ChIP);    Synaptonemal complex;    Meiosis;   
Others  :  1151182
DOI  :  10.1186/1755-8166-6-1
 received in 2012-09-26, accepted in 2012-10-25,  发布年份 2013
PDF
【 摘 要 】

Background

Errors during meiosis that affect synapsis and recombination between homologous chromosomes contribute to aneuploidy and infertility in humans. Despite the clinical relevance of these defects, we know very little about the mechanisms by which homologous chromosomes interact with one another during mammalian meiotic prophase. Further, we remain ignorant of the way in which chromosomal DNA complexes with the meiosis-specific structure that tethers homologs, the synaptonemal complex (SC), and whether specific DNA elements are necessary for this interaction.

Results

In the present study we utilized chromatin immunoprecipitation (ChIP) and DNA sequencing to demonstrate that the axial elements of the mammalian SC are markedly enriched for a specific family of interspersed repeats, short interspersed elements (SINEs). Further, we refine the role of the repeats to specific sub-families of SINEs, B1 in mouse and AluY in old world monkey (Macaca mulatta).

Conclusions

Because B1 and AluY elements are the most actively retrotransposing SINEs in mice and rhesus monkeys, respectively, our observations imply that they may serve a dual function in axial element binding; i.e., as the anchoring point for the SC but possibly also as a suppressor/regulator of retrotransposition.

【 授权许可】

   
2013 Johnson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406040734816.pdf 496KB PDF download
Figure 2. 42KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Yanowitz J: Making a break for it. Curr Opin Cell Biol 2010, 22(6):744-751.
  • [2]Hassold T, Judis L, Chan ER, Schwartz S, Seftel A, Lynn A: Cytological studies of meiotic recombination in human males. Cytogenet Genome Res 2004, 107(3–4):249-255.
  • [3]Baudat F, Keeney S: Meiotic recombination: Making and breaking go hand in hand. Curr Biol 2001, 11(2):R45-R48.
  • [4]Moore DP, Orr-Weaver TL: Chromosome segregation during meiosis: building an unambivalent bivalent. Curr Top Dev Biol 1998, 37:263-299.
  • [5]Cohen PE, Pollack SE, Pollard JW: Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev 2006, 27(4):398-426.
  • [6]Page SL, Hawley RS: The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 2004, 20:525-558.
  • [7]Pelttari J, Hoja MR, Yuan L, Liu JG, Brundell E, Moens P, Santucci-Darmanin S, Jessberger R, Barbero JL, Heyting C, Höög C: A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 2001, 21(16):5667-5677.
  • [8]Moens PB, Spyropoulos B: Immunocytology of chiasmata and chromosomal disjunction at mouse meiosis. Chromosoma 1995, 104(3):175-182.
  • [9]Kolas NK, Yuan L, Hoog C, Heng HH, Marcon E, Moens PB: Male mouse meiotic chromosome cores deficient in structural proteins SYCP3 and SYCP2 align by homology but fail to synapse and have possible impaired specificity of chromatin loop attachment. Cytogenet Genome Res 2004, 105(2–4):182-188.
  • [10]Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Höög C: The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 2000, 5(1):73-83.
  • [11]Pearlman RE, Tsao N, Moens PB: Synaptonemal complexes from DNase-treated rat pachytene chromosomes contain (GT)n and LINE/SINE sequences. Genetics 1992, 130(4):865-872.
  • [12]Hernández-Hernández A, Rincón-Arano H, Recillas-Targa F, Ortiz R, Valdes-Quezada C, Echeverría OM, Benavente R, Vázquez-Nin GH: Differential distribution and association of repeat DNA sequences in the lateral element of the synaptonemal complex in rat spermatocytes. Chromosoma 2008, 117(1):77-87.
  • [13]Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ: UCSC genome browser tutorial. Genomics 2008, 92(2):75-84.
  • [14]Smit AFA HR, Green P: 1996–2006 RepeatMasker Open-3.0. http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker webcite.
  • [15]Koehler KE, Schrump SE, Cherry JP, Hassold TJ, Hunt PA: Near-human aneuploidy levels in female mice with homeologous chromosomes. Curr Biol 2006, 16(15):R579-R580.
  • [16]Lee J, Hirano T: RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. J Cell Biol 2011, 192(2):263-276.
  • [17]Novak I, Wang H, Revenkova E, Jessberger R, Scherthan H, Höög C: Cohesin Smc1beta determines meiotic chromatin axis loop organization. J Cell Biol 2008, 180(1):83-90.
  • [18]Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ: Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 2005, 8(6):949-961.
  • [19]Zickler D, Kleckner N: The leptotene-zygotene transition of meiosis. Annu Rev Genet 1998, 32:619-697.
  • [20]Goldstein P, Slaton DE: The synaptonemal complexes of caenorhabditis elegans: comparison of wild-type and mutant strains and pachytene karyotype analysis of wild-type. Chromosoma 1982, 84(4):585-597.
  • [21]Scherthan H: Factors directing telomere dynamics in synaptic meiosis. Biochem Soc Trans 2006, 34(Pt 4):550-553.
  • [22]Bass HW: Telomere dynamics unique to meiotic prophase: formation and significance of the bouquet. Cell Mol Life Sci 2003, 60(11):2319-2324.
  • [23]Maddar H, Ratzkovsky N, Krauskopf A: Role for telomere cap structure in meiosis. Mol Biol Cell 2001, 12(10):3191-3203.
  • [24]Hemann MT, Rudolph KL, Strong MA, DePinho RA, Chin L, Greider CW: Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell 2001, 12(7):2023-2030.
  • [25]Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL: Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci USA 2004, 101(17):6496-6501.
  • [26]Naito T, Matsuura A, Ishikawa F: Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nat Genet 1998, 20(2):203-206.
  • [27]Ahmed S, Hodgkin J: MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 2000, 403(6766):159-164.
  • [28]Phillips CM, Meng X, Zhang L, Chretien JH, Urnov FD, Dernburg AF: Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nat Cell Biol 2009, 11(8):934-942.
  • [29]Thomas SE, McKee BD: Meiotic pairing and disjunction of mini-X chromosomes in drosophila is mediated by 240-bp rDNA repeats and the homolog conjunction proteins SNM and MNM. Genetics 2007, 177(2):785-799.
  • [30]Goodier JL, Kazazian HH Jr: Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 2008, 135(1):23-35.
  • [31]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-380.
  • [32]Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE: Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 2006, 6:17. BioMed Central Full Text
  • [33]Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664.
  文献评价指标  
  下载次数:1次 浏览次数:7次