期刊论文详细信息
Particle and Fibre Toxicology
Identification and functional characterization of a novel arginine/ornithine transporter, a member of a cationic amino acid transporter subfamily in the Trypanosoma cruzi genome
Susan Gaye Amara2  Wim Degrave3  Wanderley de Souza6  Christian M. Probst5  Marco Aurélio Krieger5  Técia Maria Ulisses de Carvalho4  Marcos Catanho3  Megan P. Miller2  Cristina Henriques1 
[1] Nucleo de Biologia Estrutural e Biomagens, Universidade Federal do Rio de Janeiro-CENABIO, Rio de Janeiro, RJ, Brazil;Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh 15260, PA, USA;Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil;Instituto de Biofísica Carlos Chagas Filho-UFRJ, CCS-Bloco G-Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro 21949-900, RJ, Brazil;Instituto Carlos Chagas-ICC-FIOCRUZ, Curitiba 81350-010, PR, Brazil;Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens-INBEB, Rio de Janeiro, Brazil
关键词: Parasite;    T. cruzi;    Trypanosomatids;    Protozoan;    Transporter;    Ornithine;    Arginine;   
Others  :  1224140
DOI  :  10.1186/s13071-015-0950-y
 received in 2014-09-16, accepted in 2015-06-13,  发布年份 2015
PDF
【 摘 要 】

Background

Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for arginine. It obtains this amino acid from the host through transporters expressed on the plasma membrane and on the membranes of intracellular compartments. A few cationic amino acid transporters have been characterized at the molecular level, such as the novel intracellular arginine/ornithine transporter, TcCAT1.1, a member of the TcCAT subfamily that is composed of four almost identical open reading frames in the T. cruzi genome.

Methods

The functional characterization of the TcCAT1.1 isoform was performed in two heterologous expression systems. TcCAT subfamily expression was evaluated by real-time PCR in polysomal RNA fractions, and the cellular localization of TcCAT1.1 fused to EGFP was performed by confocal and immunoelectron microscopy.

Results

In the S. cerevisiae expression system, TcCAT1.1 showed high affinity for arginine (K m  = 0.085 ± 0.04 mM) and low affinity for ornithine (K m  = 1.7 ± 0.2 mM). Xenopus laevis oocytes expressing TcCAT1.1 showed a 7-fold increase in arginine uptake when they were pre-loaded with arginine, indicating that transport is enhanced by substrates on the trans side of the membrane (trans-stimulation). Oocytes that were pre-loaded with [ 3 H]-arginine displayed a 16-fold higher efflux of [ 3 H]-arginine compared with that of the control. Analysis of polysomal RNA fractions demonstrated that the expression of members of the arginine transporter TcCAT subfamily is upregulated under nutritional stress and that this upregulation precedes metacyclogenesis. To investigate the cellular localization of the transporter, EGFP was fused to TcCAT1.1, and fluorescence microscopy and immunocytochemistry revealed the intracellular labeling of vesicles in the anterior region, in a network of tubules and vesicles.

Conclusions

TcCAT1.1 is a novel arginine/ornithine transporter, an exchanger expressed in intracellular compartments that is physiologically involved in arginine homeostasis throughout the T. cruzi life cycle. The properties and estimated kinetic parameters of TcCAT1.1 can be extended to other members of the TcCAT subfamily.

【 授权许可】

   
2015 Henriques et al.

【 预 览 】
附件列表
Files Size Format View
20150908082158614.pdf 2861KB PDF download
Fig. 7. 15KB Image download
Fig. 6. 169KB Image download
Fig. 5. 76KB Image download
Fig. 4. 11KB Image download
Fig. 3. 42KB Image download
Fig. 2. 37KB Image download
Fig. 1. 130KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Cazzulo JJ. Intermediate metabolism in Trypanosoma cruzi. J Bioenerg Biomembr. 1994; 26:157-165.
  • [2]North MJ, Lockwood BC. Amino acid and protein metabolism. Biochemistry and Molecular biology of parasites. Marr JJ and Müller M, editors. Academic Press, Harcourt Brace and Company; 1995, p. 67–88.
  • [3]Yoshida N, Camargo EP. Ureotelism and ammonotelism in trypanosomatids. J Bacteriol. 1978; 136:1184-1186.
  • [4]Ariyanayagam MR, Fairlamb AH. Diamine auxotrophy may be a universal feature of Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol. 1997; 84:111-121.
  • [5]Pereira CA, Alonso GD, Paveto MC, Flawia MM, Torres HN. L-arginine uptake and L-phosphoarginine synthesis in Trypanosoma cruzi. J Eukaryot Microbiol. 1999; 46:566-570.
  • [6]Canepa GE, Silber AM, Bouvier LA, Pereira CA. Biochemical characterization of a low-affinity arginine permease from the parasite Trypanosoma cruzi. FEMS Microbiol Lett. 2004; 236:79-84.
  • [7]Henriques C, Castro DP, Gomes LH, Garcia ES, de Souza W. Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus. Parasit Vectors. 2012; 5:214. BioMed Central Full Text
  • [8]Bӧker CA, Schaub GA. Scanning electron microscopic studies of Trypanosoma cruzi in the rectum of its vector Triatomine infestans. Z. Parasitenk. 1984; 70:459-469.
  • [9]Henriques C, Henriques-Pons A, Meuser-Batista M, Ribeiro AS, de Souza W. In vivo imaging of mice infected with bioluminescent Trypanosoma cruzi unveils novel sites of infection. Parasit Vectors. 2014; 7:89. BioMed Central Full Text
  • [10]Steverding D. The history of Chagas disease. Parasit Vectors. 2014; 7:317. BioMed Central Full Text
  • [11]Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol. 1985; 16:315-327.
  • [12]Peluffo G, Piacenza L, Irigoin F, Alvarez MN, Radi R. L-arginine metabolism during interaction of Trypanosoma cruzi with host cells. Trends Parasitol. 2004; 20:363-369.
  • [13]Cazzulo JJ. Protein and amino acid catabolism in Trypanosoma cruzi. Comp Biochem Physiol. 1984; 79B:309-320.
  • [14]Coombs GH, Sanderson BE. Amine production by Leishmania mexicana. Ann Trop Med Parasitol. 1985; 79:409-415.
  • [15]Huennekens FM, Whiteley HR. Phosphoric acid anhydrides and other energy- rich compounds. In: Comparative Biochemistry. Florkin M, Mason HS, editors. Academic, New York; 1960: p.107-180. 1
  • [16]Morrison JF. Arginine kinase and other guanidine kinases. In: The enzymes. Boyer PD, editor. Academic, New York; 1973: p.457-486. 8
  • [17]Pereira CA, Alonso GD, Paveto MC, Iribarren A, Cabanas ML, Torres HN, Torres HN, Flawiá MM. Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. J Biol Chem. 2000; 275:1495-501.
  • [18]Pereira CA, Alonso GD, Ivaldi S, Bouvier LA, Torres HN, Flawia MM. Screening of substrate analogs as potential enzyme inhibitors for the arginine kinase of Trypanosoma cruzi. J Eukaryot Microbiol. 2003; 50:132-134.
  • [19]Miranda RM, Canepa GE, Bouvier LA, Pereira CA. Trypanosoma cruzi: Oxidative stress induces arginine kinase expression. Exp. Parasitol. 2006; 114:341-344.
  • [20]Silber AM, Colli W, Ulrich H, Alves MJM, Pereira CA. Amino acid metabolic routes in Trypanosoma cruzi: possible therapeutic targets against Chagas disease. Curr Drug Targets Infect Disord. 2005; 5:53-64.
  • [21]Ruiz FA, Rodrigues CO, Docampo R. Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation and environmental stress in Trypanosoma cruzi. J Biol Chem. 2001; 276:26114-26121.
  • [22]Rohloff P, Rodrigues CO, Docampo R. Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol. 2003; 126:219-230.
  • [23]Zilberstein D. Transport of nutrients and ions across membranes of trypanosomatid parasites. Adv Parasitol. 1993; 32:261-291.
  • [24]Bursell JDH, Kirk J, Hall ST, Gero AM, Kirk K. Volume-regulatory amino acid release from the protozoan parasite Crithidia luciliae. J Membrane Biol. 1996; 154:131-141.
  • [25]Bouvier LA, Silber AM, Galvão Lopes C, Canepa GE, Miranda MR, Tonelli RR. Post genomic analysis of permeases from the amino acid/auxin family in protozoan parasites. Biochem Biophys Res Commun. 2004; 321:547-556.
  • [26]Torres C, Pérez-Victoria FJ, Parodi-Talice A, Castanys S, Gamarro F. Characterization of an ABCA-like transporter involved in vesicular trafficking in the protozoan parasite Trypanosoma cruzi. Mol Microbiol. 2004; 54(3):632-46.
  • [27]Shaked-Mishan P, Suter-Grotemeyer M, Yoel- Almagor T, Holland N, Zilberstein D, Rentsch D. A novel high- affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol Microbiol. 2006; 60:30-38.
  • [28]Hasne M, Ullman B. Identification and characterizationof a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem. 2005; 280:15188-15194.
  • [29]Carrilo C, Canepa GE, Algranati ID, Pereira CA. Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi. Biochem Biophys Res Commun. 2006; 344:936-940.
  • [30]Hasne MP, Coppens I, Soysa R, Ullman B. A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol. 2010; 76(1):78-91.
  • [31]Sychrova H, Matejckova A, Kotyk A. Kinetic properties of yeast lysine permeases coded by genes on multi- copy vectors. FEMS Microbiol. Lett. 1993; 113:57-62.
  • [32]Camargo EP. Growth and differentiation in Trypanosoma cruzi. Rev. Inst Med. São Paulo. 1964; 6:93-100.
  • [33]Contreras VT, Navarro MC, DeLima AR, Arteaga R, Duran F, Askue J, Franco Y. Production of amastigotes from metacyclic trypomastigotes of Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2002; 97:1213-1220.
  • [34]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-410.
  • [35]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database searchprograms. Nucleic Acids Res. 1997; 25:3389-3402.
  • [36]Catanho M, Macarenhas D, Degrave W, de Miranda AB. BioParser: A tool for processing of sequence similarity analysis reports. Appl Bioinformatics. 2006; 5(1):49-53.
  • [37]Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 22 ∆∆CT Method. Methods. 2001; 25:402-408.
  • [38]Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparison of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci. 1994; 14:5559-5569.
  • [39]Vazquez MP, Levin MJ. Functional analysis of the intergenic region of TcP2β gene loci allowed the construction of a improved Trypanosoma cruzi expression vector. Gene. 1999; 239:217-225.
  • [40]Otto TD, Vasconcellos EA, Gomes LHF, Moreira AS, Degrave WM, Mendonça-Lima L, Alves-Ferreira M. ChromaPipe: a pipeline for analysis, quality control and management for a DNA sequencing facility. Genet Mol Res. 2008; 7(3):861-871.
  • [41]Cruz A, Beverley SM. Gene replacement in parasitic protozoa. Nature. 1990; 348:171-173.
  • [42]Araripe JR, Cunha e Silva NL, Leal ST, de Souza W, Rondinelli E. Trypanosoma cruzi: TcRAB7 protein is localized at the Golgi complex in epimastigotes. Biochem Biophys Res Commun. 2004; 321(2):397-402.
  • [43]Saier MH, Reddy VS, Tamang DG, Vastermark A. The Transporter Classification Database. Nucleic Acids Res. 2014; 42:D251-D258.
  • [44]Arner E, Kindlund E, Nilsson D, Farzana F, Ferella M, Tammi MT, Andersson B. Database of Trypanosoma cruzi repeated genes: 20,000 additional gene variants. BMC Genomics. 2007; 26:391. BioMed Central Full Text
  • [45]Miranda MR, Sayé M, Bouvier LA, Cámara Mde L, Montserrat J, Pereira CA. Cationic amino acid uptake constitutes a metabolic regulation mechanism and occurs in the flagellar pocket of Trypanosoma cruzi. PLoS One. 2012; 7(2): Article ID e32760
  • [46]Habermeier A, Wolf S, Martiné U, Graf P, Closs EI. Two amino acid residues determine the low substrate affinity of human cationic amino acid transporter-2A. J Biol Chem. 2003; 278:19492-19499.
  • [47]Goldenberg SJM, Salles VT, Contreras MP, Lima Franco AM, Katzin W, Colli W, Morel CM. Characterization of messenger RNA from epimastigotes and metacyclic trypomastigotes of Trypanosoma cruzi. FEBS Lett. 1985; 180:265-270.
  • [48]Girard-Dias W, Alcântara CL, Cunha-e-Silva N, de Souza W, Miranda K. On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem Cell Biol. 2012; 138(6):821-831.
  • [49]Porto-Carreiro I, Attias M, Miranda K, De Souza W, Cunha-e-Silva N. Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. Eur J Cell Biol. 2000; 79(11):858-869.
  • [50]Lüneburg N, Xanthakis V, Schwedhelm E, Sullivan LM, Maas R, Anderssohn M, Riederer U, Glazer NL, Vasan RS, Böger RH. Reference Intervals for Plasma L-Arginine and the L-Arginine:Asymmetric Dimethylarginine Ratio in the Framingham Offspring Cohort1–3. J Nutr. 2011; 141(12):2186-2190.
  • [51]Closs EI. CATs, a family of three distinct mammalian cationic amino acid transporters. Amino Acids. 1996; 11:193-208.
  • [52]Closs EI, Graf P, Habermeier A, Cunningham JM, Forstermann U. Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: three related carriers with distinct transport properties. Biochemistry. 1997; 36:6462-6468.
  • [53]Devés R, Boyd CAR. Transporters for Cationic Amino Acids in Animal Cells: Discovery, Structure, and Function. Physiol. Rev. 1998; 78:487-545.
  • [54]Vekony N, Wolf S, Boissel JP, Gnauert K, Closs EI. Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues. Biochemistry. 2001; 40:12387-12394.
  • [55]Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflügers Archiv – Eur J. Phys. 2003; 447:532-542.
  • [56]Henriques C, Snachez MA, Tryon R, Landfear S. Molecular and functional characterization of the first nucleobase transporter gene from African Trypanosomas. Mol Biochem Parasitol. 2003; 130:101-110.
  • [57]Rosenthal GA. Biochemical insight into insecticidal properties of L-Canavanine, a higher plant protective allelochemical. J Chem Ecol. 1986; 12:1145-1156.
  • [58]Russnak R, Konczal D, McIntire SL. A family of yeast mediating bi-directional vacuolar amino acid transport. J Biol Chem. 2001; 2001(276):23849-23857.
  • [59]Young GB, Jack DL, Smith DW, Saier MH. The amino acid/auxin:proton symport permease family. Biochim Biophys Acta. 1999; 1415:306-322.
  • [60]Rotmann A, Closs EI, Liewald JF, Nawrath H. Intracellular accumulation of L-arg, kinetics of transport, and potassium leak conduntance in oocytes from Xenopus laevis expressing hCAT-1, hCAT-2A, and hCAT-2B. Biochim Biophys Acta. 2004; 1660:138-143.
  • [61]Bröer A, Wagner CA, Lang F, Bröer S. The heterodimeric amino acid transporter hF2hc/y + LAT2 mediates arginine efflux in exchange with glutamine. Biochem J. 2000; 349:787-795.
  • [62]Ávila AR, Dallagiovanna B, Yamada-Ogatta SF, Monteiro-Goes V, Fragoso SP, Krieger MA, Goldenberg S. Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genet Mol Res. 2003; 21:159-168.
  • [63]Darlyuk I, Goldman A, Roberts SC, Ullman B, Rentsch D, Zilberstein D. Arginine homeostasis and transport in the human pathogen Leishmania donovani. J Biol Chem. 2009; 284:19800-19807.
  • [64]Hatzoglou M, Fernandez J, Yaman I. Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu. Rev. Nutr. 2004; 24:377-399.
  • [65]Lopez AB, Wang C, Huang CC, Yaman I, Li Y, Chakravarty K, Johnson PF, Chiang CM, Snider MD, Wek RC, Hatzoglou M. A feedback transcriptional mechanism controls the level of the arginine/lysine transporter cat-1 during amino acid starvation. Biochem. J. 2007; 402:163-173.
  • [66]Majumder S, Wirth JJ, Bitonti AJ, McCann PP, Kierszenbaum F. Biochemical evidence for the presence of arginine decarboxylase activity in Trypanosoma cruzi. J Parasitol. 1992; 78:371-374.
  • [67]Hernandez S, Schwarcz de Tarlovsky S. Arginine decarboxylase in Trypanosoma cruzi, characteristics and kinetic properties. Cell Mol Biol (Noisy-le-grand). 1999; 45:383-391.
  • [68]Carrillo C, Cejas S, Huber A, Gonzalez NS, Algranati ID. Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes. J Eukaryot Microbiol. 2003; 50:312-316.
  • [69]Bayer- Santos E, Aguilar- Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela- Ramirez A, Choi H, Yoshida N, Silveira JF, Almeida IC. Proteomic analysis of Trypanosoma cruzi secretome: Characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res. 2012; 12:883-897.
  文献评价指标  
  下载次数:0次 浏览次数:8次