期刊论文详细信息
Particle and Fibre Toxicology
Infection and exposure to vector-borne pathogens in rural dogs and their ticks, Uganda
Javier Millán8  Santo Caracappa7  José de la Fuente2  Lawrence Mugisha1,10  Valeria Blanda7  Aitor Cevidanes8  Antonio Piazza7  Ester Bach5  Jesús Muro4  Andrea D. Chirife6  Isabel G. Fernández de Mera1  Laia Solano-Gallego2  Laura Altet3  Gladys Kalema-Zikusoka9  Tatiana Proboste1,11 
[1] Health & Biotechnology (SaBio) Group, IREC (CSIC-UCLM- JCCM), Ronda de Toledo s/n, Ciudad Real 13005, Spain;Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain;VetGenomics, Autonomous University of Barcelona, Cerdanyola 08193, Barcelona, Spain;Andorra Veterinary Services, Government of Andorra, Andorra La Vella, Andorra;Servei d’Hematologia Clinica Veterinaria (SHCV), Departament de Medicina i Cirurgia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain;Camino del Rosario P5, Peñaflor, Santiago, Chile;Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, Palermo, 90129, Italy;Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 252, Santiago, Chile;Conservation Through Public Health, Plot 3 Mapera Lane, Uringi Crescent, Entebbe, Uganda;Conservation & Ecosystem Health Alliance (CEHA), Kampala 34153, Uganda;Facultad de Ciencias Silvoagropecuarias, Universidad Mayor, Santiago, Chile
关键词: Tick-borne pathogens;    Rickettsia;    Ehrlichia;    East Africa;    Dogs;    Babesia;   
Others  :  1224215
DOI  :  10.1186/s13071-015-0919-x
 received in 2015-03-19, accepted in 2015-05-27,  发布年份 2015
PDF
【 摘 要 】

Background

In rural parts of Africa, dogs live in close association with humans and livestock, roam freely, and usually do not receive prophylactic measures. Thus, they are a source of infectious disease for humans and for wildlife such as protected carnivores. In 2011, an epidemiological study was carried out around three conservation areas in Uganda to detect the presence and determine the prevalence of vector-borne pathogens in rural dogs and associated ticks to evaluate the risk that these pathogens pose to humans and wildlife.

Methods

Serum samples (n = 105), blood smears (n = 43) and blood preserved on FTA cards (n = 38) and ticks (58 monospecific pools of Haemaphysalis leachi and Rhipicephalus praetextatus including 312 ticks from 52 dogs) were collected from dogs. Dog sera were tested by indirect immunofluorescence to detect the presence of antibodies against Rickettsia conorii and Ehrlichia canis. Antibodies against R. conorii were also examined by indirect enzyme immunoassay. Real time PCR for the detection of Rickettsia spp., Anaplasmataceae, Bartonella spp. and Babesia spp. was performed in DNA extracted from FTA cards and ticks.

Results

99 % of the dogs were seropositive to Rickettsia spp. and 29.5 % to Ehrlichia spp. Molecular analyses revealed that 7.8 % of the blood samples were infected with Babesia rossi, and all were negative for Rickettsia spp. and Ehrlichia spp. Ticks were infected with Rickettsia sp. (18.9 %), including R. conorii and R. massiliae; Ehrlichia sp. (18.9 %), including E. chaffeensis and Anaplasma platys; and B. rossi (1.7 %). Bartonella spp. was not detected in any of the blood or tick samples.

Conclusions

This study confirms the presence of previously undetected vector-borne pathogens of humans and animals in East Africa. We recommend that dog owners in rural Uganda be advised to protect their animals against ectoparasites to prevent the transmission of pathogens to humans and wildlife.

【 授权许可】

   
2015 Proboste et al.

【 预 览 】
附件列表
Files Size Format View
20150908161629560.pdf 788KB PDF download
Fig. 1. 62KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Baker P, Soulsbury C, Lossa G, Harris S. Domestic cat (Felis catus) and domestic dog (Canis familiaris). In: Urban carnivores: ecology, conflict, and conservation. Gehrt SD, Riley SPD, Cypher BL, editors. Johns Hopkins University Press, Baltimore; 2010: p.157-72.
  • [2]Macpherson C, Meslin F, Wandeler A. Dogs zoonoses and public health. St George’s University, Wallingfor; 2000.
  • [3]Guidelines for Dog population management. World Health Organization/World Society for the Protection of Animals (WHO/Zoon/90.165), Geneva; 1990.
  • [4]Millán J, Chirife AD, Kalema-Zikusoka G, Cabezón O, Muro J, Marco I et al.. Serosurvey of dogs for human, livestock, and wildlife pathogens, Uganda. Emerg Infect Dis. 2013; 19:680-2.
  • [5]De la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008; 13:6938-46.
  • [6]Shaw SE, Day MJ, Birtles RJ, Breitschwerdt EB. Tick-borne infectious diseases of dogs. Trends Parasitol. 2001; 17:74-80.
  • [7]Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol. 2012; 28:437-46.
  • [8]Raoult DVR. Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev. 1997; 10:694-719.
  • [9]Parola P, Paddock CD, Raoult D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev. 2005; 18:719-56.
  • [10]Parola P. Rickettsioses in sub-Saharan Africa. Ann N Y Acad Sci. 2006; 1078:42-7.
  • [11]Socolovschi C, Matsumoto K, Lou MJ, Davoust B, Raoult D, Parola P. Identification of Rickettsiae, Uganda and Djibouti. Emerg Infect Dis. 2007; 13:1508-9.
  • [12]Kelly PJ, Mason PR. Serological typing of spotted fever group Rickettsia isolates from Zimbabwe. J Clin Microbiol. 1990; 28:2302-4.
  • [13]Dvorak G, Rovid-Spickler A, Roth J. Technical fact sheets for zoonotic diseases of companion animals. In: Handbook for zoonotic diseases of companion animals. UC of VM, Iowa; 2008: p.63-267.
  • [14]Walker DH. Tick-transmitted infectious diseases in the United States. Annu Rev Public Health. 1998; 19:237-69.
  • [15]Ndip LM, Ndip RN, Esemu SN, Walker DH, McBride JW. Predominance of Ehrlichia chaffeensis in Rhipicephalus sanguineus ticks from kennel-confined dogs in Limbe, Cameroon. Exp Appl Acarol. 2010; 50:163-8.
  • [16]Parola P, Inokuma H, Camicas JL, Brouqui P, Raoult D. Detection and identification of spotted fever group Rickettsiae and Ehrlichiae in African ticks. Emerg Infect Dis. 2001; 7:1014-7.
  • [17]Blanco JR, Raoult D. Enfermedades producidas por Bartonella spp. Enferm Infecc Microbiol Clin. 2005; 23:313-20.
  • [18]Márquez FJ, Millán J, Rodríguez-Liébana JJ, García-Egea I, Muniain MA. Detection and identification of Bartonella sp. in fleas from carnivorous mammals in Andalusia, Spain. Med Vet Entomol. 2009; 23:393-8.
  • [19]Kamani J, Morick D, Mumcuoglu KY, Harrus S. Prevalence and diversity of bartonella species in commensal rodents and ectoparasites from Nigeria, West Africa. PLoS Negl Trop Dis. 2013;7.
  • [20]Kelly P, Rooney J, Marston E, Jones D, Regnery R. Bartonella henselae isolated from cats in Zimbabwe. Lancet. 1998; 351:1706.
  • [21]Matjila PT, Penzhorn BL, Bekker CPJ, Nijhof AM, Jongejan F. Confirmation of occurrence of Babesia canis vogeli in domestic dogs in South Africa. Vet Parasitol. 2004; 122:119-25.
  • [22]Oyamada M, Davoust B, Boni M, Dereure J, Bucheton B, Hammad A et al.. Detection of Babesia canis rossi, B. canis vogeli, and Hepatozoon canis in dogs in a village of eastern Sudan by using a screening PCR and sequencing methodologies. Clin Diagn Lab Immunol. 2005; 12:1343-6.
  • [23]Sasaki M, Omobowale O, Tozuka M, Ohta K, Matsuu A, Nottidge HO et al.. Molecular survey of Babesia canis in dogs in Nigeria. J Vet Med Sci. 2007; 69:1191-3.
  • [24]Walker A, Bouattour A, Camicas J, Estrada-peña A, Horak I, Latif A et al.. Ticks of domestic animals in Africa: a guide to identification of species. The University of Wisconsin, Bioscience Reports; 2003.
  • [25]Dantas-Torres F, Latrofa MS, Annoscia G, Giannelli A, Parisi A, Otranto D. Morphological and genetic diversity of Rhipicephalus sanguineus sensu lato from the New and Old Worlds. Parasit Vectors. 2013; 6:213. BioMed Central Full Text
  • [26]Beaucournu JC, Launay H. les Puces de France et du Bassin méditerranéen occidenta. Faune de France 76. French Federation of Natural Sciences, Paris; 1990.
  • [27]Solano-Gallego L, Rossi L, Scroccaro AM, Montarsi F, Caldin M, Furlanello T et al.. Detection of Leishmania infantum DNA mainly in Rhipicephalus sanguineus male ticks removed from dogs living in endemic areas of canine leishmaniosis. Parasit Vectors. 2012; 5:98. BioMed Central Full Text
  • [28]Halos L, Jamal T, Vial L, Maillard R, Suau A, Le Menache A et al.. Determination of an efficient and reliable method for DNA extraction from ticks. Vet Res. 2004; 35:709-13.
  • [29]de Mera IG F, Ruiz-Fons F, de la Fuente G, Mangold AJ, Gortázar C, de la Fuente J. Spotted fever group rickettsiae in questing ticks, central Spain. Emerg Infect Dis. 2013; 19:1163-5.
  • [30]Tabar MD, Altet L, Francino O, Sánchez A, Ferrer L, Roura X. Vector-borne infections in cats: molecular study in Barcelona area (Spain). Vet Parasitol. 2008; 151:332-6.
  • [31]Meyer D, Harvey J. Hematology procedures. Vet Clin Pathol. 2004; 33:14-26.
  • [32]Roura X, Breitschwerdt E, Lloret A, Ferrer L. Serological evidence of exposure to species in healthy or leishmania infantum -infected dogs from Barcelona, Spain. J Appl Res Vet Med. 2005; 3:129-37.
  • [33]Ndip LM, Biswas HH, Nfonsam LE, LeBreton M, Ndip RN, Bissong MA et al.. Risk factors for African tick-bite fever in rural central Africa. Am J Trop Med Hyg. 2011; 84:608-13.
  • [34]Alexander KA, Conrad PA, Gardner IA, Parish C, Appel M, Levy MG et al.. Serologic survey for selected microbial pathogens in African wild dogs (lycaon pictus) and sympatric domestic dogs (canis familiaris) in Maasai Mara, Kenya. J Zoo Wildl Med. 1993; 24:140-4.
  • [35]Woodroffe R, Prager KC, Munson L, Conradp A, Dubovi EJ, MazetJa K. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS One. 2012; 7(1):e30099.
  • [36]Esemu SN, Ndip LM, Ndip RN. Ehrlichia species, probable emerging human pathogens in sub-Saharan Africa: environmental exacerbation. Rev Environ Health. 2011; 26:269-79.
  • [37]Matjila PT, Leisewitz AL, Jongejan F, Penzhorn BL. Molecular detection of tick-borne protozoal and ehrlichial infections in domestic dogs in South Africa. Vet Parasitol. 2008; 155:152-7.
  • [38]Uilenberg G. Babesia-a historical overview. Vet Parasitol. 2006; 138:3-10.
  • [39]Penzhorn BL. Why is Southern African canine babesiosis so virulent? an evolutionary perspective. Parasit Vectors. 2011; 4:51. BioMed Central Full Text
  • [40]Munson L, Terio KA, Kock R, Mlengeya T, Roelke ME, Dubovi E et al.. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions. PLoS One. 2008; 3:5-10.
  • [41]Breitschwerdt EB, Kordick DL. Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev. 2000;428–438.
  • [42]Pérez C, Maggi RG, Diniz PPVP, Breitschwerdt EB. Molecular and serological diagnosis of Bartonella infection in 61 dogs from the United States. J Vet Intern Med. 2011; 25:805-10.
  • [43]Roelke-Parker ME, Munson L, Packer C, Kock R, Cleaveland S, Carpenter M et al.. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature. 1996; 381(6578):172.
  • [44]Maggi RG, Breitschwerdt EB. Potential limitations of the 16S-23S rRNA intergenic region for molecular detection of Bartonella species. J Clin Microbiol. 2005; 43:1171-6.
  • [45]Gil H, García-Esteban C, Barandika JF, Peig J, Toledo A, Escudero R et al.. Variability of bartonella genotypes among small mammals in Spain. Appl Environ Microbiol. 2010; 76(24):8062-70.
  文献评价指标  
  下载次数:9次 浏览次数:11次