期刊论文详细信息
Particle and Fibre Toxicology
In vivo imaging of mice infected with bioluminescent Trypanosoma cruzi unveils novel sites of infection
Wanderley de Souza4  Aline Salgado Ribeiro1  Marcelo Meuser-Batista3  Andréa Henriques-Pons1  Cristina Henriques2 
[1] Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz-Fundação Oswaldo Cruz, Janeiro-RJ, Brazil;Fundação Oswaldo Cruz, Cruz- FIOCRUZ, Mato Grosso do Sul, Campo Grande-MS, Brazil;Departamento de Anatomia Patológica e Citopatologia, Instituto Fernandes Figueira-FIOCRUZ, Janeiro-RJ, Brazil;Instituto Nacional de Metrologia, Qualidade e Tecnologia-Inmetro, Janeiro-RJ, Brazil
关键词: Chagas disease;    Mice;    Heart;    Rectum;    Testicles;    Bioluminescence;    Luciferase;    Trypanosoma cruzi;   
Others  :  811877
DOI  :  10.1186/1756-3305-7-89
 received in 2013-09-20, accepted in 2014-02-21,  发布年份 2014
PDF
【 摘 要 】

Background

The development of techniques that allow the imaging of animals infected with parasites expressing luciferase opens up new possibilities for following the fate of parasites in infected mammals.

Methods

D-luciferin potassium salt stock solution was prepared in phosphate-buffered saline (PBS) at 15 mg/ml. To produce bioluminescence, infected and control mice received an intraperitoneal injection of luciferin stock solution (150 mg/kg). All mice were immediately anesthetized with 2% isofluorane, and after 10 minutes were imaged. Ex vivo evaluation of infected tissues and organs was evaluated in a 24-well plate in 150 μg/ml D-luciferin diluted in PBS. Images were captured using the IVIS Lumina image system (Xenogen). Dissected organs were also evaluated by microscopy of hematoxylin-eosin stained sections.

Results

Here we describe the results obtained using a genetically modified Dm28c strain of T. cruzi expressing the firefly luciferase to keep track of infection by bioluminescence imaging. Progression of infection was observed in vivo in BALB/c mice at various intervals after infection with transgenic Dm28c-luc. The bioluminescent signal was immediately observed at the site of T. cruzi inoculation, and one day post infection (dpi) it was disseminated in the peritoneal cavity. A similar pattern in the cavity was observed on 7 dpi, but the bioluminescence was more intense in the terminal region of the large intestine, rectum, and gonads. On 14 and 21 dpi, bioluminescent parasites were also observed in the heart, snout, paws, hind limbs, and forelimbs. From 28 dpi to 180 dpi in chronically infected mice, bioluminescence declined in regions of the body but was concentrated in the gonad region. Ex vivo evaluation of dissected organs and tissues by bioluminescent imaging confirmed the in vivo bioluminescent foci. Histopathological analysis of dissected organs demonstrated parasite nests at the rectum and snout, in muscle fibers of mice infected with Dm28c-WT and with Dm28c-luc, corroborating the bioluminescent imaging.

Conclusion

Bioluminescence imaging is accurate for tracking parasites in vivo, and this methodology is important to gain a better understanding of the infection, tissue inflammation, and parasite biology regarding host cell interaction, proliferation, and parasite clearance to subpatent levels.

【 授权许可】

   
2014 Henriques et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709073515340.pdf 4177KB PDF download
Figure 9. 389KB Image download
Figure 8. 70KB Image download
Figure 7. 82KB Image download
Figure 6. 40KB Image download
Figure 5. 231KB Image download
Figure 4. 43KB Image download
Figure 3. 177KB Image download
Figure 2. 73KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]World Health Organization: Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases. Geneva: World Health Organization; 2010. WHO/HTM/NTD/2010.1
  • [2]De Souza W, Carvalho TMU, Barrias ES: Review on Trypanosoma cruzi: host cell interaction. Int J Cell Biol 2010, 2010:295394. doi: 10.1155/2010/295394
  • [3]Combs TP, Nagajyothi , Mukherjee S, de Almeida CJ, Jelicks LA, Schubert W, Lin Y, Jayabalan DS, Zhao D, Braunstein VL, Landskroner-Eiger S, Cordero A, Factor SM, Weiss LM, Lisanti MP, Tanowitz HB, Scherer PE: The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 2005, 280:24085-24094.
  • [4]Viotti R, Vigliano C, Lococo B, Bertocchi G, Petti M, Alvarez MG, Postan M, Armenti A: Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med 2006, 144:724-734.
  • [5]Nagajyothi F, Machado FS, Burleigh BA, Jelicks LA, Scherer PE, Mukherjee S, Lisanti MP, Weiss LM, Garg NJ, Tanowitz HB: Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol 2012, 14:634-643.
  • [6]Soeiro MN, de Castro SL: Screening of potential anti-trypanosoma cruzi candidates: In vitro and In vivo studies. Open Med Chem J 2011, 5:21-30.
  • [7]Souza RA, Henriques C, Alves-Ferreira M, Mendonça-Lima L, Degrave WM: Investigation of a protein expression profile by high-resolution bidimensional electrophoresis of Trypanosoma cruzi epimastigotes. Anal Biochem 2007, 365:144-146.
  • [8]Ferella M, Nilsson D, Darban H, Rodrigues C, Bontempi EJ, Docampo R, Andersson B: Proteomics in Trypanosoma cruzi-localization of novel proteins to various organelles. Proteomics 2008, 8:2735-2749.
  • [9]Alves-Ferreira M, Guimarães AC, Capriles PV, Dardenne LE, Degrave WM: A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information. Mem Inst Oswaldo Cruz 2009, 2009(104):1100-1110.
  • [10]Henriques C, Moreira TLB, Maia-Brigagão C, Henriques-Pons A, Carvalho TMU, de Souza W: Tetrazolium salt based methods for high-throughput evaluation of anti-parasite chemotherapy. Anal Methods 2011, 3:2148-2155.
  • [11]Andriani G, Chessler AD, Courtemanche G, Burleigh BA, Rodriguez A: Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening. PLoS Negl Trop Dis 2011, 5:e1298.
  • [12]Henriques C, Castro DP, Gomes LH, Garcia ES, de Souza W: Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus. Parasit Vectors 2012, 5:214. BioMed Central Full Text
  • [13]Thalhofer CJ, Graff JW, Love-Homan L, Hickerson SM, Craft N, Beverley SM, Wilson ME: In vivo imaging of Transgenic leishmania parasites in a live host. J Vis Exp 2010, 41:e1980.
  • [14]Saeij JP, Boyle JP, Grigg ME, Arrizabalaga G, Boothroyd JC: Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains. Infect Immun 2005, 73:695-702.
  • [15]Camargo EP: Growth and differentiation in Trypanosoma cruzi. Rev Inst Med São Paulo 1964, 6:93-100.
  • [16]Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S: In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 1985, 16:315-327.
  • [17]Brener Z: Therapeutic activity and criterion of cure in mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 1962, 4:389-396.
  • [18]Vazquez MP, Levin MJ: Functional analysis of the intergenic region of TcP2β gene loci allowed the construction of a improved Trypanosoma cruzi expression vector. Gene 1999, 239:217-225.
  • [19]Cruz A, Beverley SM: Gene replacement in parasitic protozoa. Nature 1990, 348:171-173.
  • [20]Andrade SG: Influence of Trypanosoma cruzi strain on the pathogenesis of chronic myocardiopathy in mice. Mem Inst Oswaldo Cruz 1990, 85:17-27.
  • [21]Araújo-Jorge T: (ORG). Doença de Chagas: Manual para experimentação animal. Rio de Janeiro: Editora Fiocruz / Instituto Oswaldo Cruz; 2000:368.
  • [22]Medeiros MM, Araújo-Jorge TC, Batista WS, da Silva TMOA, de Souza AP: Trypanosoma cruzi infection: do distinct populations cause intestinal motility alteration? Parasitol Res 2010, 107:239-242.
  • [23]Calvet CM, Meuser M, Almeida D, Meirelles MN, Pereira MC: Trypanosoma cruzi-cardiomyocyte interaction: role of fibronectin in the recognition process and extracellular matrix expression in vitro and in vivo. Exp Parasitol 2004, 107:20-30.
  • [24]Gutierrez FR, Mineo TW, Pavanelli WR, Guedes PM, Silva JS: The effects of nitric oxide on the immune system during Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2009, 104:236-245.
  • [25]Arantes RM, Marche HH, Bahia MT, Cunha FQ, Rossi MA, Silva JS: Interferon-gamma-induced nitric oxide causes intrinsic intestinal denervation in Trypanosoma cruzi-infected mice. Am J Pathol 2004, 164:1361-1368.
  • [26]Steindel M, Scholz AF, Toma HK, Schlemper BR Jr: Presence of Trypanosoma cruzi in the anal glands of naturally infected opossum (didelphis Marsupialis) in the state of Santa Catarina Brazil. Mem Inst Oswaldo Cruz 1988, 83:135-137.
  • [27]Andrade LO, Galvão LM, Meirelles Mde N, Chiari E, Pena SD, Macedo AM: Differential tissue tropism of Trypanosoma cruzi strains: an in vitro study. Mem Inst Oswaldo Cruz 2010, 105:834-837.
  • [28]Espinoza B, Rico T, Sosa S, Oaxaca E, Vizcaino-Castillo A, Caballero ML, Martínez I: Mexican Trypanosoma cruzi T. cruzi I strains with different degrees of virulence induce diverse humoral and cellular immune responses in a murine experimental infection model. J Biomed Biotechnol 2010, 2010:890672. doi: 10.1155/2010/890672
  • [29]Hyland KV, Asfaw SH, Olson CL, Daniels MD, Engman DM: Bioluminescent imaging of Trypanosoma cruzi infection. Int J Parasitol 2008, 38(12):1391-1400.
  • [30]Canavaci AMC, Bustamante JM, Padilla AM, Perez Brandan CM, Simpson LJ, Xu D, Boehlke CL, Tarleton RL: In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Neglected Trop Disease 2010, 4:e740.
  • [31]Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG: A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 2009, 104:1051-1054.
  • [32]Higuera SL, Guhl F, Ramírez JD: Identification of Trypanosoma cruzi Discrete Typing Units (DTUs) through the implementation of High-Resolution Melting (HRM) genotyping assay. Parasit Vectors 2013, 6:112. BioMed Central Full Text
  • [33]Black CL, Ocanã S, Riner D, Costales JA, Lascano MS, Davila S, Arcos-Teran L, Seed JR, Grijalva MJ: Household risk factors for Trypanosoma cruzi seropositivity in two geographic regions of Ecuador. J Parasitol 2007, 93:12-16.
  • [34]Mejía-Jaramillo AM, Penã VH, Triana-Chávez O: Trypanosoma cruzi: biological characterization of lineages I and II supports the predominance of lineage I in Colombia. Exp Parasitol 2009, 121:83-91.
  • [35]Carrasco HJ, Segovia M, Llewellyn MS, Morocoima A, Urdaneta-Morales S, Martínez C, Martínez CE, Garcia C, Rodríguez M, Espinosa R, de Noya BA, Díaz-Bello Z, Herrera L, Fitzpatrick S, Yeo M, Miles MA, Feliciangeli MD: Geographical distribution of Trypanosoma cruzi genotypes in Venezuela. PLoS Negl Trop Dis 2012, 6:e1707.
  文献评价指标  
  下载次数:146次 浏览次数:42次