期刊论文详细信息
Particle and Fibre Toxicology
microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach
Mara Cecilia Rosenzvit1  Laura Kamenetzky1  Lucas Maldonado1  Magdalena Zarowiecki2  Marcela Cucher1  Natalia Macchiaroli1 
[1] Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, Buenos Aires, CP 1121, Argentina;Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
关键词: Platyhelminth;    Parasite;    Cestode;    Echinococcosis;    Echinococcus canadensis;    High-throughput;    microRNAs;   
Others  :  1147047
DOI  :  10.1186/s13071-015-0686-8
 received in 2014-11-24, accepted in 2015-01-21,  发布年份 2015
PDF
【 摘 要 】

Background

microRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. The particular developmental and metabolic characteristics of cestode parasites highlight the importance of studying miRNA gene regulation in these organisms. Here, we perform a comprehensive analysis of miRNAs in the parasitic cestode Echinococcus canadensis G7, one of the causative agents of the neglected zoonotic disease cystic echinococcosis.

Methods

Small RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. For miRNA prediction, miRDeep2 core algorithm was used. The output list of candidate precursors was manually curated to generate a high confidence set of miRNAs. Differential expression analysis of miRNAs between stages or species was estimated with DESeq. Expression levels of selected miRNAs were validated using poly-A RT-qPCR.

Results

In this study we used a high-throughput approach and found transcriptional evidence of 37 miRNAs thus expanding the miRNA repertoire of E. canadensis G7. Differential expression analysis showed highly regulated miRNAs between life cycle stages, suggesting a role in maintaining the features of each developmental stage or in the regulation of developmental timing. In this work we characterize conserved and novel Echinococcus miRNAs which represent 30 unique miRNA families. Here we confirmed the remarkable loss of conserved miRNA families in E. canadensis, reflecting their low morphological complexity and high adaptation to parasitism.

Conclusions

We performed the first in-depth study profiling of small RNAs in the zoonotic parasite E. canadensis G7. We found that miRNAs are the preponderant small RNA silencing molecules, suggesting that these small RNAs could be an essential mechanism of gene regulation in this species. We also identified both parasite specific and divergent miRNAs which are potential biomarkers of infection. This study will provide valuable information for better understanding of the complex biology of this parasite and could help to find new potential targets for therapy and/or diagnosis.

【 授权许可】

   
2015 Macchiaroli et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403194948201.pdf 1782KB PDF download
Figure 7. 60KB Image download
Figure 6. 16KB Image download
Figure 5. 18KB Image download
Figure 4. 18KB Image download
Figure 3. 60KB Image download
Figure 2. 36KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Yang YR, Clements AC, Gray DJ, Atkinson JA, Williams GM, Barnes TS et al.. Impact of anthropogenic and natural environmental changes on Echinococcus transmission in Ningxia Hui Autonomous Region, the People’s Republic of China. Parasit Vectors. 2012; 5:146. BioMed Central Full Text
  • [2]Nakao M, Lavikainen A, Yanagida T, Ito A. Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae). Int J Parasitol. 2013; 43(12–13):1017-29.
  • [3]Schneider R, Gollackner B, Schindl M, Tucek G, Auer H. Echinococcus canadensis G7 (pig strain): an underestimated cause of cystic echinococcosis in Austria. Am J Trop Med Hyg. 2010; 82(5):871-4.
  • [4]Dybicz M, Gierczak A, Dabrowska J, Rdzanek L, Michalowicz B. Molecular diagnosis of cystic echinococcosis in humans from central Poland. Parasitol Int. 2013; 62(4):364-7.
  • [5]Eckert J, Thompson RC, Lymbery AJ, Pawlowski ZS, Gottstein B, Morgan UM. Further evidence for the occurrence of a distinct strain of Echinococcus granulosus in European pigs. Parasitol Res. 1993; 79(1):42-8.
  • [6]Rosenzvit MC, Canova SG, Kamenetzky L, Guarnera EA. Echinococcus granulosus: intraspecific genetic variation assessed by a DNA repetitive element. Parasitology. 2001; 123(Pt 4):381-8.
  • [7]Kamenetzky L, Muzulin PM, Gutierrez AM, Angel SO, Zaha A, Guarnera EA et al.. High polymorphism in genes encoding antigen B from human infecting strains of Echinococcus granulosus. Parasitology. 2005; 131(Pt 6):805-15.
  • [8]Muzulin PM, Kamenetzky L, Gutierrez AM, Guarnera EA, Rosenzvit MC. Echinococcus granulosus antigen B gene family: further studies of strain polymorphism at the genomic and transcriptional levels. Exp Parasitol. 2008; 118(2):156-64.
  • [9]Chow C, Gauci CG, Vural G, Jenkins DJ, Heath DD, Rosenzvit MC et al.. Echinococcus granulosus: variability of the host-protective EG95 vaccine antigen in G6 and G7 genotypic variants. Exp Parasitol. 2008; 119(4):499-505.
  • [10]Alvarez Rojas CA, Gauci CG, Lightowlers MW. Antigenic differences between the EG95-related proteins from Echinococcus granulosus G1 and G6 genotypes: implications for vaccination. Parasite Immunol. 2013; 35(2):99-102.
  • [11]Cucher M, Mourglia-Ettlin G, Prada L, Costa H, Kamenetzky L, Poncini C et al.. Echinococcus granulosus pig strain (G7 genotype) protoscoleces did not develop secondary hydatid cysts in mice. Vet Parasitol. 2013; 193(1–3):185-92.
  • [12]Ambros V. The functions of animal microRNAs. Nature. 2004; 431(7006):350-5.
  • [13]Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013; 14(8):475-88.
  • [14]Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2):281-97.
  • [15]Cucher M, Prada L, Mourglia-Ettlin G, Dematteis S, Camicia F, Asurmendi S et al.. Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes. Int J Parasitol. 2011; 41(3–4):439-48.
  • [16]Fernandez C, Gregory WF, Loke P, Maizels RM. Full-length-enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted signal peptide sequences. Mol Biochem Parasitol. 2002; 122(2):171-80.
  • [17]Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL et al.. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013; 496(7443):57-63.
  • [18]Sanger FTP. [ftp://ftp.sanger.ac.uk/pub/project/pathogens/Echinococcus]
  • [19]GeneDB. [http://www.genedb.org]
  • [20]Mallatt J, Craig CW, Yoder MJ. Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol. 2012; 64(3):603-17.
  • [21]NCBI. [http://www.ncbi.nlm.nih.gov/]
  • [22]Parkinson J, Wasmuth JD, Salinas G, Bizarro CV, Sanford C, Berriman M et al.. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis. 2012; 6(11):e1897.
  • [23]PartiGeneDB. [http://www.compsysbio.org/partigene]
  • [24]FASTX-Toolkit [http://hannonlab.cshl.edu/fastx_toolkit]
  • [25]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. BioMed Central Full Text
  • [26]Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012; 40(1):37-52.
  • [27]Pearson WR. Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol. 2000; 132:185-219.
  • [28]Winter AD, Weir W, Hunt M, Berriman M, Gilleard JS, Devaney E et al.. Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel. BMC Genomics. 2012; 13:4. BioMed Central Full Text
  • [29]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al.. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21):2947-8.
  • [30]Friedlander MR, Adamidi C, Han T, Lebedeva S, Isenbarger TA, Hirst M et al.. High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci U S A. 2009; 106(28):11546-51.
  • [31]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106. BioMed Central Full Text
  • [32]Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques. 2005; 39(4):519-25.
  • [33]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001; 25(4):402-8.
  • [34]Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30(1):207-10.
  • [35]Ahmed R, Chang Z, Younis AE, Langnick C, Li N, Chen W et al.. Conserved miRNAs are candidate post-transcriptional regulators of developmental arrest in free-living and parasitic nematodes. Genome Biol Evol. 2013; 5(7):1246-60.
  • [36]Fromm B, Worren MM, Hahn C, Hovig E, Bachmann L. Substantial loss of conserved and gain of novel, MicroRNA families in flatworms. Mol Biol Evol. 2013; 30(12):2619-28.
  • [37]Bai Y, Zhang Z, Jin L, Kang H, Zhu Y, Zhang L et al.. Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus. BMC Genomics. 2014; 15:736. BioMed Central Full Text
  • [38]de Wit E, Linsen SE, Cuppen E, Berezikov E. Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res. 2009; 19(11):2064-74.
  • [39]Tyagi S, Vaz C, Gupta V, Bhatia R, Maheshwari S, Srinivasan A et al.. CID-miRNA: a web server for prediction of novel miRNA precursors in human genome. Biochem Biophys Res Commun. 2008; 372(4):831-4.
  • [40]Campo-Paysaa F, Semon M, Cameron RA, Peterson KJ, Schubert M. microRNA complements in deuterostomes: origin and evolution of microRNAs. Evol Dev. 2011; 13(1):15-27.
  • [41]Jin X, Lu L, Su H, Lou Z, Wang F, Zheng Y et al.. Comparative analysis of known miRNAs across platyhelminths. FEBS J. 2013; 280(16):3944-51.
  • [42]Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1):57-63.
  • [43]Cai P, Hou N, Piao X, Liu S, Liu H, Yang F et al.. Profiles of small non-coding RNAs in Schistosoma japonicum during development. PLoS Negl Trop Dis. 2011; 5(8):e1256.
  • [44]Dhahbi JM, Atamna H, Boffelli D, Magis W, Spindler SR, Martin DI. Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence. PLoS One. 2011; 6(5):e20509.
  • [45]Tonge DP, Tugwood JD, Kelsall J, Gant TW. The role of microRNAs in the pathogenesis of MMPi-induced skin fibrodysplasia. BMC Genomics. 2013; 14:338. BioMed Central Full Text
  • [46]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5):843-54.
  • [47]Littlewood DT, Lockyer AE, Webster BL, Johnston DA, Le TH. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol. 2006; 39(2):452-67.
  • [48]Huang J, Hao P, Chen H, Hu W, Yan Q, Liu F et al.. Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One. 2009; 4(12):e8206.
  • [49]Wang Z, Xue X, Sun J, Luo R, Xu X, Jiang Y et al.. An “in-depth” description of the small non-coding RNA population of Schistosoma japonicum schistosomulum. PLoS Negl Trop Dis. 2010; 4(2):e596.
  • [50]Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R. The new animal phylogeny: reliability and implications. Proc Natl Acad Sci U S A. 2000; 97(9):4453-6.
  • [51]Zheng H, Zhang W, Zhang L, Zhang Z, Li J, Lu G et al.. The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet. 2013; 45(10):1168-75.
  • [52]Skinner DE, Rinaldi G, Koziol U, Brehm K, Brindley PJ. How might flukes and tapeworms maintain genome integrity without a canonical piRNA pathway? Trends Parasitol. 2014; 30(3):123-9.
  • [53]Palakodeti D, Smielewska M, Lu YC, Yeo GW, Graveley BR. The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA. 2008; 14(6):1174-86.
  • [54]Koziol U, Rauschendorfer T, Zanon Rodriguez L, Krohne G, Brehm K. The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. Evodevo. 2014; 5(1):10. BioMed Central Full Text
  • [55]Kato M, Slack FJ. Ageing and the small, non-coding RNA world. Ageing Res Rev. 2013; 12(1):429-35.
  • [56]Gong B, Lee YS, Lee I, Shelite TR, Kunkeaw N, Xu G et al.. Compartmentalized, functional role of angiogenin during spotted fever group rickettsia-induced endothelial barrier dysfunction: evidence of possible mediation by host tRNA-derived small noncoding RNAs. BMC Infect Dis. 2013; 13:285. BioMed Central Full Text
  • [57]Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther. 2013; 21(2):368-79.
  • [58]Wu X, Fu Y, Yang D, Xie Y, Zhang R, Zheng W et al.. Identification of neglected cestode Taenia multiceps microRNAs by illumina sequencing and bioinformatic analysis. BMC Vet Res. 2013; 9:162. BioMed Central Full Text
  • [59]Ai L, Xu MJ, Chen MX, Zhang YN, Chen SH, Guo J et al.. Characterization of microRNAs in Taenia saginata of zoonotic significance by Solexa deep sequencing and bioinformatics analysis. Parasitol Res. 2012; 110(6):2373-8.
  • [60]Cai P, Piao X, Hao L, Liu S, Hou N, Wang H et al.. A deep analysis of the small non-coding RNA population in Schistosoma japonicum eggs. PLoS One. 2013; 8(5):e64003.
  • [61]de Souza GM, Muniyappa MK, Carvalho SG, Guerra-Sa R, Spillane C. Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Genomics. 2011; 98(2):96-111.
  • [62]Boulias K, Horvitz HR. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 2012; 15(4):439-50.
  • [63]Zhang X, Zabinsky R, Teng Y, Cui M, Han M. microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc Natl Acad Sci U S A. 2011; 108(44):17997-8002.
  • [64]Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al.. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403(6772):901-6.
  • [65]Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS et al.. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011; 147(1):81-94.
  • [66]Konrad C, Kroner A, Spiliotis M, Zavala-Gongora R, Brehm K. Identification and molecular characterisation of a gene encoding a member of the insulin receptor family in Echinococcus multilocularis. Int J Parasitol. 2003; 33(3):301-12.
  • [67]Hemer S, Konrad C, Spiliotis M, Koziol U, Schaack D, Forster S et al.. Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development. BMC Biol. 2014; 12:5. BioMed Central Full Text
  • [68]Sokol NS. The role of microRNAs in muscle development. Curr Top Dev Biol. 2012; 99:59-78.
  • [69]Yuva-Aydemir Y, Simkin A, Gascon E, Gao FB. MicroRNA-9: functional evolution of a conserved small regulatory RNA. RNA Biol. 2011; 8(4):557-64.
  • [70]Camicia F, Herz M, Prada LC, Kamenetzky L, Simonetta SH, Cucher MA et al.. The nervous and prenervous roles of serotonin in Echinococcus spp. Int J Parasitol. 2013; 43(8):647-59.
  • [71]Galindo M, Schadebrodt G, Galanti N. Echinococcus granulosus: cellular territories and morphological regions in mature protoscoleces. Exp Parasitol. 2008; 119(4):524-33.
  • [72]Koziol U, Krohne G, Brehm K. Anatomy and development of the larval nervous system in Echinococcus multilocularis. Front Zool. 2013; 10(1):24. BioMed Central Full Text
  • [73]Lascano EF, Coltorti EA, Varela-Diaz VM. Fine structure of the germinal membrane of Echinococcus granulosus cysts. J Parasitol. 1975; 61(5):853-60.
  • [74]Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al.. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433(7027):769-73.
  • [75]Esslinger SM, Schwalb B, Helfer S, Michalik KM, Witte H, Maier KC et al.. Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biol. 2013; 10(6):1042-56.
  • [76]Aparicio R, Simoes Da Silva CJ, Busturia A. MicroRNA miR-7 contributes to the control of Drosophila wing growth. Dev Dyn. 2015; 244(1):21-30.
  • [77]Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM, King BL et al.. miRNAs: small genes with big potential in metazoan phylogenetics. Mol Biol Evol. 2013; 30(11):2369-82.
  • [78]Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S et al.. The deep evolution of metazoan microRNAs. Evol Dev. 2009; 11(1):50-68.
  • [79]Niwa R, Slack FJ. The evolution of animal microRNA function. Curr Opin Genet Dev. 2007; 17(2):145-50.
  • [80]Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science. 2011; 334(6059):1091-7.
  • [81]Hoy AM, Lundie RJ, Ivens A, Quintana JF, Nausch N, Forster T et al.. Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection. PLoS Negl Trop Dis. 2014; 8(2):e2701.
  文献评价指标  
  下载次数:8次 浏览次数:9次