期刊论文详细信息
Radiation Oncology
Variations of circulating endothelial progenitor cells and transforming growth factor-beta-1 (TGF-β1) during thoracic radiotherapy are predictive for radiation pneumonitis
Huiming Yu3  Xuan Wang4  Luhua Zhang2  Yongjie Zhong2  Wenjun Zhang2  Tingyi Xia4  Yunfang Liu1 
[1] Department of Diagnosis, Shandong University Medical School, Jinan, Shandong Province 250012, China;Department of Radiotherapy, Capital Medical University Affiliated Beijing Chao- yang Hospital, Beijing 100020, China;Present address: Huiming Yu, Department of Radiotherapy, Capital Medical University Affiliated Beijing Chao-yang Hospital, No. 8, Gongti South Road, Beijing 100020, P.R. China;Cancer Center, Air Force General Hospital, PLA, Beijing 100012, China
关键词: Endothelial progenitor cells;    Transforming growth factor-beta-1;    Radiation pneumonitis;    Non-small cell lung cancer;   
Others  :  1153325
DOI  :  10.1186/1748-717X-8-189
 received in 2013-03-16, accepted in 2013-06-14,  发布年份 2013
PDF
【 摘 要 】

Background

The vascular endothelial cells are important targets of radiotherapy, which may be involved in the pathogenesis of radiation pneumonitis (RP). This study investigated the variations of circulating endothelial progenitor cells (EPCs) and transforming growth factor-beta-1 (TGF-β1) during three-dimensional conformal radiation therapy (3D-CRT) in patients with non–small-cell lung cancer (NSCLC) and analyzed the correlation between these variations with the occurrence of RP.

Patients and methods

From November 2008 to November 2009, eighty-four consecutive patients receiving 3D-CRT for stage III disease were evaluated prospectively. Circulating EPCs and TGF-β1 levels were measured at baseline, every 2 weeks during, and at the end of treatment. RP was evaluated prospectively at 6 weeks after 3D-CRT.

Results

Thirty-eight patients (47.5%) experienced score 1 or more of RP. The baseline levels of EPCs and TGF-β1 were analyzed, no difference was found between patients with and without RP during and after 3D-CRT. By serial measurement of TGF-β1 and EPCs levels, we found that the mean levels of EPCs in the whole population remained stable during radiotherapy, but the mean levels of TGF-β1 increased slowly during radiotherapy. TGF-β1 and EPCs levels were all significantly higher at week 2, week 4 and week 6 in patients with RP than that in patients without RP, respectively. During the period of radiation treatment, TGF-β1 levels began to increase in the first 2 weeks and became significantly higher at week 6 (P < 0.01). EPCs levels also began to increase in the first 2 weeks and reached a peak at week 4. Using an ANOVA model for repeated-measures, we found significant associations between the levels of TGF-β1 and EPCs during the course of 3D-CRT and the risk of developing RP (P < 0.01). Most of the dosimetric factors showed a significant association with RP.

Conclusion

Early variations of TGF-β1 and EPCs levels during 3D-CRT are significantly associated with the risk of RP. Variations of circulating TGF-β1 and EPCs levels during 3D-CRT may serve as independent predictive factors for RP.

Trial registration

Trials registration number: 20070618

【 授权许可】

   
2013 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407075605974.pdf 566KB PDF download
Figure 3. 46KB Image download
Figure 2. 34KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Peulen H, Karlsson K, Lindberg K, Tullgren O, Baumann P, Lax I, Lewensohn R, Wersäll P: Toxicity after reirradiation of pulmonary tumours with stereotactic body radiotherapy. Radiother Oncol 2011, 101(2):260-266.
  • [2]Mazeron R, Etienne-Mastroianni B, Pérol D, Arpin D, Vincent M, Falchero L, Martel-Lafay I, Carrie C, Claude L: Predictive factors of late radiation fibrosis: a prospective study in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2010, 77(1):38-43.
  • [3]Barthelemy-Brichant N, Bosquée L, Cataldo D, Corhay JL, Gustin M, Seidel L, Thiry A, Ghaye B, Nizet M, Albert A, Deneufbourg JM, Bartsch P, Nusgens B: Increased IL-6 and TGF-beta1 concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy. Int J Radiat Oncol Biol Phys 2004, 58(3):758-767.
  • [4]Baker R, Han G, Sarangkasiri S, DeMarco M, Turke C, Stevens CW, Dilling TJ: Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung. Int J Radiat Oncol Biol Phys 2013, 85(1):190-195.
  • [5]Saintigny P, Burger JA: Recent advances in non-small cell lung cancer biology and clinical management. Discov Med 2012, 13(71):287-297.
  • [6]Salama JK, Vokes EE: New radiotherapy and chemoradiotherapy approaches for non-small-cell lung cancer. J Clin Oncol 2013, 31(8):1029-1038.
  • [7]Zhang HP, Takayama K, Su B, Jiao XD, Li R, Wang JJ: Effect of sunitinib combined with ionizing radiation on endothelial cells. J Radiat Res 2011, 52(1):1-8.
  • [8]Van der Meeren A, Vandamme M, Squiban C, Gaugler MH, Mouthon MA: Inflammatory reaction and changes in expression of coagulation proteins on lung endothelial cells after total-body irradiation in mice. Radiat Res 2003, 160(6):637-646.
  • [9]Sabatier F, Lacroix R, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F: Circulating endothelial cells, microparticles and progenitors: towards the definition of vascular competence. Rev Med Interne 2011, 32(1):54-63.
  • [10]Ribatti D: The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med 2004, 8(3):294-300.
  • [11]Thal MA, Krishnamurthy P, Mackie AR, Hoxha E, Lambers E, Verma S, Ramirez V, Qin G, Losordo DW, Kishore R: Enhanced angiogenic and cardiomyocyte differentiation capacity of epigenetically reprogrammed mouse and human endothelial progenitor cells augments their efficacy for ischemic myocardial repair. Circ Res 2012, 111(2):180-190.
  • [12]Giannoni E, Taddei ML, Parri M, Bianchini F, Santosuosso M, Grifantini R, Fibbi G, Mazzanti B, Calorini L, Chiarugi P: EphA2-mediated mesenchymal-amoeboid transition induced by endothelial progenitor cells enhances metastatic spread due to cancer-associated fibroblasts. J Mol Med (Berl) 2013, 91(1):103-115.
  • [13]Yin M, Liao Z, Yuan X, Guan X, O'Reilly MS, Welsh J, Wang LE, Wei Q: Polymorphisms of the vascular endothelial growth factor gene and severe radiation pneumonitis in non-small cell lung cancer patients treated with definitive radiotherapy. Cancer Sci 2012, 103(5):945-950.
  • [14]Fosslien E: Cancer morphogenesis: role of mitochondrial failure. Ann Clin Lab Sci 2008, 38(4):307-329.
  • [15]Zhang XJ, Sun JG, Sun J, Ming H, Wang XX, Wu L, Chen ZT: Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol 2012, 138(12):2103-2116.
  • [16]Rödel F, Hantschel M, Hildebrandt G, Schultze-Mosgau S, Rödel C, Herrmann M, Sauer R, Voll RE: Dose-dependent biphasic induction and transcriptional activity of nuclear factor kappa B (NF-kappaB) in EA.hy.926 endothelial cells after low-dose X-irradiation. Int J Radiat Biol 2004, 80(2):115-123.
  • [17]Balzarini P, Benetti A, Invernici G, Cristini S, Zicari S, Caruso A, Gatta LB, Berenzi A, Imberti L, Zanotti C, Portolani N, Giulini SM, Ferrari M, Ciusani E, Navone SE, Canazza A, Parati EA, Alessandri G: Transforming growth factor-beta1 induces microvascular abnormalities through a down-modulation of neural cell adhesion molecule in human hepatocellular carcinoma. Lab Invest 2012, 92(9):1297-1309.
  • [18]Luo H, Zhang Y, Zhang Z, Jin Y: The protection of MSCs from apoptosis in nerve regeneration by TGFβ1 through reducing inflammation and promoting VEGF-dependent angiogenesis. Biomaterials 2012, 33(17):4277-4287.
  • [19]Anitua E, Troya M, Orive G: Plasma rich in growth factors promote gingival tissue regeneration by stimulating fibroblast proliferation and migration and by blocking transforming growth factor-β1-induced myodifferentiation. J Periodontol 2012, 83(8):1028-1037.
  • [20]Evrard SM, d'Audigier C, Mauge L, Israël-Biet D, Guerin CL, Bieche I, Kovacic JC, Fischer AM, Gaussem P, Smadja DM: The profibrotic cytokine transforming growth factor-β1 increases endothelial progenitor cell angiogenic properties. J Thromb Haemost 2012, 10(4):670-679.
  • [21]Yu HM, Liu YF, Yu JM, Liu J, Zhao Y, Hou M: Involved-field radiotherapy is effective for patients 70 years old or more with early stage non-small cell lung cancer. Radiother Oncol 2008, 87(1):29-34.
  • [22]ICRU-50: Prescribing, Recording, Reporting, Photon Beam Therapy. Washington, DC: International Commission on Radiation Units and Measurements; 1994.
  • [23]LENT SOMA tables Radiother Oncol 1995, 35:17-60.
  • [24]Yu H, Liu Y, Han J, Yang Z, Sheng W, Dai H, Wang Y, Xia T, Hou M: TLR7 regulates dendritic cell-dependent B-cell responses through BlyS in immune thrombocytopenic purpura. Eur J Haematol 2011, 86(1):67-74.
  • [25]Ebara T, Kawamura H, Kaminuma T, Okamoto M, Yoshida D, Okubo Y, Takahashi T, Kobayashi K, Sakaguchi H, Ando Y, Nakano T: Hemithoracic intensity-modulated radiotherapy using helical tomotherapy for patients after extrapleural pneumonectomy for malignant pleural mesothelioma. J Radiat Res 2012, 53(2):288-294.
  • [26]Yirmibesoglu E, Higginson DS, Fayda M, Rivera MP, Halle J, Rosenman J, Xie L, Marks LB: Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer 2012, 76(3):350-353.
  • [27]Kwa SL, Lebesque JV, Theuws JC: Radiation pneumonitis as a function of mean lung dose: An analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 1998, 42(1):1-9.
  • [28]Hernando ML, Marks LB, Bentel GC: Radiation-induced pulmonary toxicity: A dose volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001, 51(3):650-659.
  • [29]Martel MK, Ten Haken RK, Hazuka MB: Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 1994, 28(3):575-581.
  • [30]Cappuccini F, Eldh T, Bruder D, Gereke M, Jastrow H, Schulze-Osthoff K, Fischer U, Köhler D, Stuschke M, Jendrossek V: New insights into the molecular pathology of radiation-induced pneumopathy. Radiother Oncol 2011, 101(1):86-92.
  • [31]Cho HJ, Kim HS, Lee MM, Kim DH, Yang HJ, Hur J, Hwang KK, Oh S, Choi YJ, Chae IH, Oh BH, Choi YS, Walsh K, Park YB: Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation 2003, 108(23):2918-2925.
  • [32]Kong Z, Li J, Zhao Q, Zhou Z, Yuan X, Yang D, Chen X: Dynamic compression promotes proliferation and neovascular networks of endothelial progenitor cells in demineralized bone matrix scaffold seed. Appl Physiol 2012, 113(4):619-626.
  • [33]Xia WH, Yang Z, Xu SY, Chen L, Zhang XY, Li J, Liu X, Qiu YX, Shuai XT, Tao J: Age-related decline in reendothelialization capacity of human endothelial progenitor cells is restored by shear stress. Hypertension 2012, 59(6):1225-1231.
  • [34]Zeng L, Ding S, Yan Z, Chen C, Sang W, Cao J, Cheng H, Xu K: Irradiation induces homing of donor endothelial progenitor cells in allogeneic hematopoietic stem cell transplantation. Int J Hematol 2012, 95(2):189-197.
  • [35]Rübe CE, Palm J, Erren M, Fleckenstein J, König J, Remberger K, Rübe C: Cytokine plasma levels: reliable predictors for radiation pneumonitis? PLoS One 2008, 3(8):e2898.
  • [36]Anscher MS: Targeting the TGF-beta1 pathway to prevent normal tissue injury after cancer therapy. Oncologist 2010, 15(4):350-359.
  • [37]Anscher MS, Thrasher B, Zgonjanin L, Rabbani ZN, Corbley MJ, Fu K, Sun L, Lee WC, Ling LE, Vujaskovic Z: Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int J Radiat Oncol Biol Phys 2008, 71(3):829-837.
  • [38]Yu HM, Liu YF, Cheng YF, Hu LK, Hou M: Effects of rhubarb extract on radiation induced lung toxicity via decreasing transforming growth factor-beta-1 and interleukin-6 in lung cancer patients treated with radiotherapy. Lung Cancer 2008, 59(2):219-226.
  • [39]Choi CP, Kim YI, Lee JW, Lee MH: The effect of narrowband ultraviolet B on the expression of matrix metalloproteinase-1, transforming growth factor-beta1 and type I collagen in human skin fibroblasts. Clin Exp Dermatol 2007, 32(2):180-185.
  • [40]Wang J, Wang Y, Wang Y, Ma Y, Lan Y, Yang X: Transforming Growth Factor β-regulated MicroRNA-29a Promotes Angiogenesis through Targeting the Phosphatase and Tensin Homolog in Endothelium. J Biol Chem 2013, 288(15):10418-10426.
  文献评价指标  
  下载次数:2次 浏览次数:10次