期刊论文详细信息
Retrovirology
AZT resistance alters enzymatic properties and creates an ATP-binding site in SFVmac reverse transcriptase
Birgitta M Wöhrl1  Paul Rösch1  Kristian Schweimer1  Anna Schneider1 
[1] Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30, Bayreuth, D-95447, Germany
关键词: HIV;    Foamy virus;    NMR;    Reverse transcriptase;    ATP binding;    AZT resistance;   
Others  :  1162847
DOI  :  10.1186/s12977-015-0147-7
 received in 2014-09-22, accepted in 2015-01-27,  发布年份 2015
PDF
【 摘 要 】

Background

The replication of simian foamy virus from macaques can be inhibited by the nucleoside reverse transcriptase inhibitor azidothymidine (AZT, zidovudine). Four substitutions in the protease-reverse transcriptase (PR-RT) protein (K211I, I224T, S345T, E350K) are necessary to obtain highly AZT resistant and fully replication competent virus. AZT resistance is based on the excision of the incorporated AZTMP in the presence of ATP. I224T is a polymorphism which is not essential for AZT resistance per se, but is important for regaining efficient replication of the resistant virus.

Results

We constructed PR-RT enzymes harboring one to four amino acid substitutions to analyze them biochemically and to determine their ability to remove the incorporated AZTMP. S345T is the only single substitution variant exhibiting significant AZTMP excision activity. Although K211I alone showed no AZTMP excision activity, excision efficiency doubled when K211I was present in combination with S345T and E350K. K211I also decreased nucleotide binding affinity and increased fidelity. NMR titration experiments revealed that a truncated version of the highly AZT resistant mt4 variant, comprising only the fingers-palm subdomains was able to bind ATP with a KD-value of ca. 7.6 mM, whereas no ATP binding could be detected in the corresponding wild type protein. We could show by NMR spectroscopy that S345T is responsible for ATP binding, probably by making a tryptophan residue accessible.

Conclusion

Although AZT resistance in SFVmac is based on excision of the incorporated AZTMP like in HIV-1, the functions of the resistance substitutions in SFVmac PR-RT appear to be different. No mutation resulting in an aromatic residue like F/Y215 in HIV, which is responsible for π-π-stacking interactions with ATP, is present in SFVmac. Instead, S345T is responsible for creating an ATP binding site, probably by making an already existing tryptophan more accessible, which in turn can interact with ATP. This is in contrast to HIV-1 RT, in which an ATP binding site is present in the WT RT but differs from that of the AZT resistant enzyme.

【 授权许可】

   
2015 Schneider et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150413082032871.pdf 2483KB PDF download
Figure 7. 61KB Image download
Figure 6. 87KB Image download
Figure 5. 127KB Image download
Figure 4. 68KB Image download
Figure 3. 28KB Image download
Figure 2. 36KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Goff SP: Retroviridae: the retroviruses and their replication. In Fields virology. Edited by Knipe DM, Howley PM. Lippincott Williams & Wilkins, Philadelphia; 2007:1999-2069.
  • [2]Linial ML, Eastman SW: Particle assembly and genome packaging. Curr Top Microbiol Immunol 2003, 277:89-110.
  • [3]Hartl MJ, Mayr F, Rethwilm A, Wöhrl BM: Biophysical and enzymatic properties of the simian and prototype foamy virus reverse transcriptases. Retrovirology 2010, 7:5. BioMed Central Full Text
  • [4]Schneider A, Peter D, Schmitt J, Leo B, Richter F, Rösch P, et al.: Structural requirements for enzymatic activities of foamy virus protease-reverse transcriptase. Proteins 2014, 82:375-85.
  • [5]Hartl MJ, Schweimer K, Reger MH, Schwarzinger S, Bodem J, Rösch P, et al.: Formation of transient dimers by a retroviral protease. Biochem J 2010, 427:197-203.
  • [6]Hartl MJ, Wöhrl BM, Rösch P, Schweimer K: The solution structure of the simian foamy virus protease reveals a monomeric protein. J Mol Biol 2008, 381:141-9.
  • [7]Hartl MJ, Bodem J, Jochheim F, Rethwilm A, Rösch P, Wöhrl BM: Regulation of foamy virus protease activity by viral RNA - a novel and unique mechanism among retroviruses. J Virol 2011, 85:4462-9.
  • [8]Lee CC, Ye F, Tarantal AF: Comparison of growth and differentiation of fetal and adult rhesus monkey mesenchymal stem cells. Stem Cells Dev 2006, 15:209-20.
  • [9]Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, et al.: Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 1997, 71:7305-11.
  • [10]Rosenblum LL, Patton G, Grigg AR, Frater AJ, Cain D, Erlwein O, et al.: Differential susceptibility of retroviruses to nucleoside analogues. Antivir Chem Chemother 2001, 12:91-7.
  • [11]Kretzschmar B, Nowrouzi A, Hartl MJ, Gärtner K, Wiktorowicz T, Herchenröder O, et al.: AZT-resistant foamy virus. Virology 2008, 370:151-7.
  • [12]Meyer PR, Matsuura SE, Mian AM, So AG, Scott WA: A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 1999, 4:35-43.
  • [13]Meyer PR, Matsuura SE, So AG, Scott WA: Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc Natl Acad Sci U S A 1998, 95:13471-6.
  • [14]Hartl MJ, Kretzschmar B, Frohn A, Nowrouzi A, Rethwilm A, Wöhrl BM: AZT resistance of simian foamy virus reverse transcriptase is based on the excision of AZTMP in the presence of ATP. Nucleic Acids Res 2008, 36:1009-16.
  • [15]Tu X, Das K, Han Q, Bauman JD, Clark AD Jr, Hou X, et al.: Structural basis of HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 2010, 17:1202-9.
  • [16]Sarafianos SG, Clark AD Jr, Das K, Tuske S, Birktoft JJ, Ilankumaran P, et al.: Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA. EMBO J 2002, 21:6614-24.
  • [17]Boyer PL, Sarafianos SG, Arnold E, Hughes SH: Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J Virol 2001, 75:4832-42.
  • [18]Larder BA, Kemp SD: Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 1989, 246:1155-8.
  • [19]Kellam P, Boucher CA, Larder BA: Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc Natl Acad Sci U S A 1992, 89:1934-8.
  • [20]Arion D, Kaushik N, McCormick S, Borkow G, Parniak MA: Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): Increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 1998, 37:15908-17.
  • [21]Boyer PL, Sarafianos SG, Arnold E, Hughes SH: The M184V mutation reduces the selective excision of zidovudine 5 ′-monophosphate (AZTMP) by the reverse transcriptase of human immunodeficiency virus type 1. J Virol 2002, 76:3248-56.
  • [22]Nowak E, Potrzebowski W, Konarev PV, Rausch JW, Bona MK, Svergun DI, et al.: Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res 2013, 41(6):3874-87.
  • [23]Steitz TA. DNA polymerases: Structural diversity and common mechanisms. J Biol Chem 1999;17395-17398.
  • [24]Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA: Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 1992, 256:1783-90.
  • [25]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22:195-201.
  • [26]Das K, Bandwar RP, White KL, Feng JY, Sarafianos SG, Tuske S, et al.: Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J Biol Chem 2009, 284:35092-100.
  • [27]Garforth SJ, Domaoal RA, Lwatula C, Landau MJ, Meyer AJ, Anderson KS, et al.: K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies. J Mol Biol 2010, 401:33-44.
  • [28]Delviks-Frankenberry KA, Nikolenko GN, Boyer PL, Hughes SH, Coffin JM, Jere A, et al.: HIV-1 reverse transcriptase connection subdomain mutations reduce template RNA degradation and enhance AZT excision. Proc Natl Acad Sci U S A 2008, 105:10943-8.
  • [29]Delviks-Frankenberry KA, Nikolenko GN, Barr R, Pathak VK: Mutations in human immunodeficiency virus type 1 RNase H primer grip enhance 3′-azido-3′-deoxythymidine resistance. J Virol 2007, 81:6837-45.
  • [30]Nikolenko GN, Delviks-Frankenberry KA, Palmer S, Maldarelli F, Fivash MJ Jr, Coffin JM, et al.: Mutations in the connection domain of HIV-1 reverse transcriptase increase 3′-azido-3′-deoxythymidine resistance. Proc Natl Acad Sci U S A 2007, 104:317-22.
  • [31]Shah FS, Curr KA, Hamburgh ME, Parniak M, Mitsuya H, Arnez JG, et al.: Differential influence of nucleoside analog-resistance mutations K65R and L74V on the overall mutation rate and error specificity of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 2000, 275(35):27037-44.
  • [32]Boyer PL, Hughes SH: Analysis of mutations at position 184 in reverse transcriptase of human immunodeficiency virus type 1. Antimicrob Agents Chemother 1995, 39:1624-8.
  • [33]Back NK, Nijhuis M, Keulen W, Boucher CA, Oude Essink BO, van Kuilenburg AB, et al.: Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. EMBO J 1996, 15:4040-9.
  • [34]Oude Essink BB, Back NK, Berkhout B: Increased polymerase fidelity of the 3TC-resistant variants of HIV-1 reverse transcriptase. Nucleic Acids Res 1997, 25:3212-7.
  • [35]Sluis-Cremer N, Arion D, Kaushik N, Lim H, Parniak MA: Mutational analysis of Lys65 of HIV-1 reverse transcriptase. Biochem J 2000, 348(Pt 1):77-82.
  • [36]Georgiadis MM, Jessen SM, Ogata CM, Telesnitsky A, Goff SP, Hendrickson WA: Mechanistic implications from the structure of a catalytic fragment of moloney murine leukemia virus reverse transcriptase. Structure 1995, 3:879-92.
  • [37]Gavegnano C, Kennedy EM, Kim B, Schinazi RF: The impact of macrophage nucleotide pools on HIV-1 reverse transcription, viral replication, and the development of novel antiviral agents. Mol Biol Int 2012, 2012:625983.
  • [38]Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA: Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. potential role for strategically located mitochondria. J Biol Chem 1999, 274:13281-91.
  • [39]Wang RH, Tao L, Trumbore MW, Berger SL: Turnover of the acyl phosphates of human and murine prothymosin alpha in vivo. J Biol Chem 1997, 272:26405-12.
  • [40]Cavanagh J, Fairbrother WJ, Palmer AG III, Rance M, Skelton NJ: Protein NMR spectroscopy: principles and practice. Academic, Boston; 2007.
  • [41]Wishart DS, Sykes BD, Richards FM: Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 1991, 222:311-33.
  • [42]Huang HF, Chopra R, Verdine GV, Harrison SC: Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug design. Science 1998, 282:1669-75.
  • [43]Leo B, Hartl MJ, Schweimer K, Mayr F, Wöhrl BM: Insights into the structure and activity of prototype foamy virus RNase H. Retrovirology 2012, 9:14. BioMed Central Full Text
  • [44]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning - a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1994.
  • [45]Meyer O, Schlegel HG: Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol 1983, 37:277-310.
  • [46]Pervushin K: Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q Rev Biophys 2000, 33:161-97.
  • [47]Pervushin K, Riek R, Wider G, Wuthrich K: Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 1997, 94:12366-71.
  • [48]Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K: TROSY in triple-resonance experiments: New perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A 1998, 95:13585-90.
  文献评价指标  
  下载次数:33次 浏览次数:13次