期刊论文详细信息
Orphanet Journal of Rare Diseases
A cross-sectional controlled developmental study of neuropsychological functions in patients with glutaric aciduria type I
Peter Burgard2  Stefan Kölker2  Sven F. Garbade1  Georg F. Hoffmann2  Esther M. Glahn2  Gisela Haege2  Jana Heringer2  Nikolas Boy2 
[1] Faculty of Applied Psychology, SRH University of Applied Sciences, Heidelberg, D-69123, Germany;Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg, D-69120, Germany
关键词: Dystonia;    Information processing;    Cognitive development;    Glutaric aciduria type I;   
Others  :  1235011
DOI  :  10.1186/s13023-015-0379-6
 received in 2015-06-17, accepted in 2015-12-14,  发布年份 2015
PDF
【 摘 要 】

Background

Glutaric aciduria type I (GA-I) is an inherited metabolic disease due to deficiency of glutaryl-CoA dehydrogenase (GCDH). Cognitive functions are generally thought to be spared, but have not yet been studied in detail.

Methods

Thirty patients detected by newborn screening (n = 13), high-risk screening (n = 3) or targeted metabolic testing (n = 14) were studied for simple reaction time (SRT), continuous performance (CP), visual working memory (VWM), visual-motor coordination (Tracking) and visual search (VS). Dystonia (n = 13 patients) was categorized using the Barry-Albright-Dystonia Scale (BADS). Patients were compared with 196 healthy controls. Developmental functions of cognitive performances were analysed using a negative exponential function model.

Results

BADS scores correlated with speed tests but not with tests measuring stability or higher cognitive functions without time constraints. Developmental functions of GA-I patients significantly differed from controls for SRT and VS but not for VWM and showed obvious trends for CP and Tracking. Dystonic patients were slower in SRT and CP but reached their asymptote of performance similar to asymptomatic patients and controls in all tests. Asymptomatic patients did not differ from controls, except showing significantly better results in Tracking and a trend for slower reactions in visual search. Data across all age groups of patients and controls fitted well to a model of negative exponential development.

Conclusions

Dystonic patients predominantly showed motor speed impairment, whereas performance improved with higher cognitive load. Patients without motor symptoms did not differ from controls. Developmental functions of cognitive performances were similar in patients and controls. Performance in tests with higher cognitive demand might be preserved in GA-I, even in patients with striatal degeneration.

【 授权许可】

   
2015 Boy et al.

【 预 览 】
附件列表
Files Size Format View
20151228042435311.pdf 703KB PDF download
Fig. 3. 42KB Image download
Fig. 2. 40KB Image download
Fig 1. 23KB Image download
【 图 表 】

Fig 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Greenberg CR, Duncan AM, Gregory CA, Singal R, Goodman SI. Assignment of human glutaryl-CoA dehydrogenase gene (GCDH) to the short arm of chromosome 19 (19p13.2) by in situ hybridization and somatic cell hybrid analysis. Genomics. 1994; 21(1):289-90.
  • [2]Kolker S, Koeller DM, Okun JG, Hoffmann GF. Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency. Ann Neurol. 2004; 55(1):7-12.
  • [3]Lamp J, Keyser B, Koeller DM, Ullrich K, Braulke T, Muhlhausen C. Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells. J Biol Chem. 2011; 286(20):17777-84.
  • [4]Sauer SW, Okun JG, Schwab MA, Crnic LR, Hoffmann GF, Goodman SI et al.. Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: a role for glutaryl-coenzyme A. J Biol Chem. 2005; 280(23):21830-6.
  • [5]Strauss KA, Donnelly P, Wintermark M. Cerebral haemodynamics in patients with glutaryl-coenzyme A dehydrogenase deficiency. Brain. 2010; 133(Pt 1):76-92.
  • [6]Baric I, Wagner L, Feyh P, Liesert M, Buckel W, Hoffmann GF. Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. J Inherit Metab Dis. 1999; 22(8):867-81.
  • [7]Posset R, Opp S, Struys EA, Volkl A, Mohr H, Hoffmann GF et al.. Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I. J Inherit Metab Dis. 2015; 38(2):265-72.
  • [8]Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kolker S. Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain. 2011; 134(Pt 1):157-70.
  • [9]Sauer SW, Opp S, Mahringer A, Kaminski MM, Thiel C, Okun JG et al.. Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood–brain barrier and the choroid plexus. Biochim Biophys Acta. 2010; 1802(6):552-60.
  • [10]Forstner R, Hoffmann GF, Gassner I, Heideman P, De Klerk JB, Lawrenz-Wolf B et al.. Glutaric aciduria type I: ultrasonographic demonstration of early signs. Pediatr Radiol. 1999; 29(2):138-43.
  • [11]Harting I, Neumaier-Probst E, Seitz A, Maier EM, Assmann B, Baric I et al.. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain. 2009; 132(Pt 7):1764-82.
  • [12]Lin SK, Hsu SG, Ho ES, Tsai CR, Hseih YT, Lo FC et al.. Novel mutation and prenatal sonographic findings of glutaric aciduria (type I) in two Taiwanese families. Prenat Diagn. 2002; 22(8):725-9.
  • [13]Mellerio C, Marignier S, Roth P, Gaucherand P, des Portes V, Pracros JP et al.. Prenatal cerebral ultrasound and MRI findings in glutaric aciduria Type 1: a de novo case. Ultrasound Obstet Gynecol. 2008; 31(6):712-4.
  • [14]Kolker S, Garbade SF, Greenberg CR, Leonard JV, Saudubray JM, Ribes A et al.. Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res. 2006; 59(6):840-7.
  • [15]Strauss KA, Puffenberger EG, Robinson DL, Morton DH. Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Genet C: Semin Med Genet. 2003; 121C(1):38-52.
  • [16]Boy N, Haege G, Heringer J, Assmann B, Muhlhausen C, Ensenauer R et al.. Low lysine diet in glutaric aciduria type I--effect on anthropometric and biochemical follow-up parameters. J Inherit Metab Dis. 2013; 36(3):525-33.
  • [17]Heringer J, Boy SP, Ensenauer R, Assmann B, Zschocke J, Harting I et al.. Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol. 2010; 68(5):743-52.
  • [18]Kolker S, Garbade SF, Boy N, Maier EM, Meissner T, Muhlhausen C et al.. Decline of acute encephalopathic crises in children with glutaryl-CoA dehydrogenase deficiency identified by newborn screening in Germany. Pediatr Res. 2007; 62(3):357-63.
  • [19]Kyllerman M, Skjeldal O, Christensen E, Hagberg G, Holme E, Lonnquist T et al.. Long-term follow-up, neurological outcome and survival rate in 28 Nordic patients with glutaric aciduria type 1. Eur J Paediatr Neurol. 2004; 8(3):121-9.
  • [20]Naughten ER, Mayne PD, Monavari AA, Goodman SI, Sulaiman G, Croke DT. Glutaric aciduria type I: outcome in the Republic of Ireland. J Inherit Metab Dis. 2004; 27(6):917-20.
  • [21]Neumaier-Probst E, Harting I, Seitz A, Ding C, Kolker S. Neuroradiological findings in glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency). J Inherit Metab Dis. 2004; 27(6):869-76.
  • [22]Chow CW, Haan EA, Goodman SI, Anderson RM, Evans WA, Kleinschmidt-DeMasters BK et al.. Neuropathology in glutaric acidaemia type 1. Acta Neuropathol. 1988; 76(6):590-4.
  • [23]Funk CB, Prasad AN, Frosk P, Sauer S, Kolker S, Greenberg CR et al.. Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain. 2005; 128(Pt 4):711-22.
  • [24]Soffer D, Amir N, Elpeleg ON, Gomori JM, Shalev RS, Gottschalk-Sabag S. Striatal degeneration and spongy myelinopathy in glutaric acidemia. J Neurol Sci. 1992; 107(2):199-204.
  • [25]Bahr O, Mader I, Zschocke J, Dichgans J, Schulz JB. Adult onset glutaric aciduria type I presenting with a leukoencephalopathy. Neurology. 2002; 59(11):1802-4.
  • [26]Kulkens S, Harting I, Sauer S, Zschocke J, Hoffmann GF, Gruber S et al.. Late-onset neurologic disease in glutaryl-CoA dehydrogenase deficiency. Neurology. 2005; 64(12):2142-4.
  • [27]Leisman G, Melillo R. The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev Neurosci. 2013; 24(1):9-25.
  • [28]Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci. 2008; 1142:266-309.
  • [29]Kolker S, Ahlemeyer B, Krieglstein J, Hoffmann GF. Maturation-dependent neurotoxicity of 3-hydroxyglutaric and glutaric acids in vitro: a new pathophysiologic approach to glutaryl-CoA dehydrogenase deficiency. Pediatr Res. 2000; 47(4 Pt 1):495-503.
  • [30]Kolker S, Kohr G, Ahlemeyer B, Okun JG, Pawlak V, Horster F et al.. Ca(2+) and Na(+) dependence of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr Res. 2002; 52(2):199-206.
  • [31]Reiner A, Medina L, Veenman CL. Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev. 1998; 28(3):235-85.
  • [32]Morton DH, Bennett MJ, Seargeant LE, Nichter CA, Kelley RI. Glutaric aciduria type I: a common cause of episodic encephalopathy and spastic paralysis in the Amish of Lancaster County, Pennsylvania. Am J Med Genet. 1991; 41(1):89-95.
  • [33]Brown A, Crowe L, Beauchamp MH, Anderson V, Boneh A. Neurodevelopmental profiles of children with glutaric aciduria type I diagnosed by newborn screening: a follow-up case series. JIMD Rep. 2015; 18:125-34.
  • [34]Beauchamp MH, Boneh A, Anderson V. Cognitive, behavioural and adaptive profiles of children with glutaric aciduria type I detected through newborn screening. J Inherit Metab Dis. 2009; 32 Suppl 1:S207-13.
  • [35]Boneh A, Beauchamp M, Humphrey M, Watkins J, Peters H, Yaplito-Lee J. Newborn screening for glutaric aciduria type I in Victoria: treatment and outcome. Mol Genet Metab. 2008; 94(3):287-91.
  • [36]Harting I, Boy N, Heringer J, Seitz A, Bendszus M, Pouwels PJ et al. H-MRS in glutaric aciduria type 1: impact of biochemical phenotype and age on the cerebral accumulation of neurotoxic metabolites. Journal of inherited metabolic disease. 2015. doi:10.1007/s10545-015-9826-8
  • [37]Barry MJ, VanSwearingen JM, Albright AL. Reliability and responsiveness of the Barry-Albright Dystonia Scale. Dev Med Child Neurol. 1999; 41(6):404-11.
  • [38]Albrecht J, Garbade SF, Burgard P. Neuropsychological speed tests and blood phenylalanine levels in patients with phenylketonuria: a meta-analysis. Neurosci Biobehav Rev. 2009; 33(3):414-21.
  • [39]Burgard P, Rey F, Rupp A, Abadie V, Rey J. Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: results of a cross-national and cross-sectional study. Pediatr Res. 1997; 41(3):368-74.
  • [40]Osherson DN, Scarborough D, Sternberg S. An invitation to cognitive science. Mit Press, Cambridge; 1998.
  • [41]Lezak MD. Neuropsychological assessment. Oxford University Press, Oxford; 2004.
  • [42]Kail R. Developmental change in speed of processing during childhood and adolescence. Psychol Bull. 1991; 109(3):490-501.
  • [43]Kail R. Processing Time Decreases Globally at an Exponential Rate during Childhood and Adolescence. J Exp Child Psychol. 1993; 56(2):254-65.
  • [44]Spiess A-N. qpcR: Modelling and analysis of real-time PCR data, 2014. R package version.1.4-0.
  • [45]Elzhov T, Mullen K, Spiess A, Bolker B. minpack. lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. R Packag Version 1: 1–8. 2013
  • [46]Spiess A-N, Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol. 2010; 10(1):6. BioMed Central Full Text
  • [47]Mead R, Curnow RN. Statistical methods in agriculture and experimental biology. Chapman and Hall, London; 1983.
  • [48]Busanello EN, Pettenuzzo L, Botton PH, Pandolfo P, de Souza DO, Woontner M et al.. Neurodevelopmental and cognitive behavior of glutaryl-CoA dehydrogenase deficient knockout mice. Life Sci. 2013; 92(2):137-42.
  • [49]Garbade SF, Greenberg CR, Demirkol M, Gokcay G, Ribes A, Campistol J et al.. Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients. J Inherit Metab Dis. 2014; 37(5):763-73.
  • [50]Ashby FG, Spiering BJ. The neurobiology of category learning. Behav Cogn Neurosci Rev. 2004; 3(2):101-13.
  • [51]Coulthard EJ, Bogacz R, Javed S, Mooney LK, Murphy G, Keeley S et al.. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making. Brain. 2012; 135(Pt 12):3721-34.
  • [52]Kolker S, Christensen E, Leonard JV, Greenberg CR, Boneh A, Burlina AB et al.. Diagnosis and management of glutaric aciduria type I--revised recommendations. J Inherit Metab Dis. 2011; 34(3):677-94.
  文献评价指标  
  下载次数:54次 浏览次数:40次